D. Douglas, J. Naliboff, M. R. T. Fraters, J. Dannberg, D. Eberhart-Phillips, S. Ellis
{"title":"Constraining Solid Dynamics, Interface Rheology, and Slab Hydration in the Hikurangi Subduction Zone Using 3-Dimensional Fully Dynamic Models","authors":"D. Douglas, J. Naliboff, M. R. T. Fraters, J. Dannberg, D. Eberhart-Phillips, S. Ellis","doi":"10.1029/2024GC011824","DOIUrl":null,"url":null,"abstract":"<p>Simulating present-day solid Earth deformation and volatile cycling requires integrating diverse geophysical data sets and advanced numerical techniques to model complex multiphysics processes at high resolutions. Subduction zone modeling is particularly challenging due to the large geographic extent, localized deformation zones, and the strong feedbacks between reactive fluid transport and solid deformation. Here, we develop new workflows for simulating 3-dimensional thermal-mechanical subduction and patterns of volatile dehydration at convergent margins, adaptable to include reactive fluid transport. We apply these workflows to the Hikurangi margin, where recent geophysical investigations have offered unprecedented insight into the structure and processes coupling fluid transport and solid deformation across broad spatiotemporal scales. Geophysical data sets constraining the downgoing and overriding plate structure are collated with the Geodynamic World Builder, which provides the initial conditions for forward simulations using the open-source geodynamic modeling software code ASPECT. We systematically examine how plate interface rheology and hydration of the downgoing plate and upper mantle influence Pacific–Australian convergence and seismic anisotropy. Models prescribing a plate boundary viscosity of <span></span><math>\n <semantics>\n <mrow>\n <mn>5</mn>\n <mo>×</mo>\n <mn>1</mn>\n <msup>\n <mn>0</mn>\n <mn>20</mn>\n </msup>\n </mrow>\n <annotation> $5\\times 1{0}^{20}$</annotation>\n </semantics></math> Pa s best reproduce observed plate velocities, and changing the configuration of the Pacific–Australia plate boundary directly influences the modeled plate motions. Models considering hydrated olivine fabrics best reproduce observations of seismic anisotropy. Predicted patterns of slab dehydration and mantle melting correlate well with observations of seismic attenuation and arc volcanism. These results suggest that hydration-related rheological heterogeneity and related fluid weakening may strongly influence slab dynamics. Future investigations integrating coupled fluid transport and global mantle flow will provide insight into the feedbacks between subduction dynamics, fluid pathways, and arc volcanism.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"26 6","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011824","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011824","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Simulating present-day solid Earth deformation and volatile cycling requires integrating diverse geophysical data sets and advanced numerical techniques to model complex multiphysics processes at high resolutions. Subduction zone modeling is particularly challenging due to the large geographic extent, localized deformation zones, and the strong feedbacks between reactive fluid transport and solid deformation. Here, we develop new workflows for simulating 3-dimensional thermal-mechanical subduction and patterns of volatile dehydration at convergent margins, adaptable to include reactive fluid transport. We apply these workflows to the Hikurangi margin, where recent geophysical investigations have offered unprecedented insight into the structure and processes coupling fluid transport and solid deformation across broad spatiotemporal scales. Geophysical data sets constraining the downgoing and overriding plate structure are collated with the Geodynamic World Builder, which provides the initial conditions for forward simulations using the open-source geodynamic modeling software code ASPECT. We systematically examine how plate interface rheology and hydration of the downgoing plate and upper mantle influence Pacific–Australian convergence and seismic anisotropy. Models prescribing a plate boundary viscosity of Pa s best reproduce observed plate velocities, and changing the configuration of the Pacific–Australia plate boundary directly influences the modeled plate motions. Models considering hydrated olivine fabrics best reproduce observations of seismic anisotropy. Predicted patterns of slab dehydration and mantle melting correlate well with observations of seismic attenuation and arc volcanism. These results suggest that hydration-related rheological heterogeneity and related fluid weakening may strongly influence slab dynamics. Future investigations integrating coupled fluid transport and global mantle flow will provide insight into the feedbacks between subduction dynamics, fluid pathways, and arc volcanism.
期刊介绍:
Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged.
Areas of interest for this peer-reviewed journal include, but are not limited to:
The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution
Principles and applications of geochemical proxies to studies of Earth history
The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them
The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales
Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets
The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets
Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.