Asymmetric Response of the North Atlantic Gyres to the North Atlantic Oscillation

IF 3.3 2区 地球科学 Q1 OCEANOGRAPHY
Dhruv Bhagtani, Andrew McC. Hogg, Ryan M. Holmes, Navid C. Constantinou, Hemant Khatri
{"title":"Asymmetric Response of the North Atlantic Gyres to the North Atlantic Oscillation","authors":"Dhruv Bhagtani,&nbsp;Andrew McC. Hogg,&nbsp;Ryan M. Holmes,&nbsp;Navid C. Constantinou,&nbsp;Hemant Khatri","doi":"10.1029/2024JC021997","DOIUrl":null,"url":null,"abstract":"<p>The North Atlantic Oscillation (NAO) is a leading mode of atmospheric variability, affecting the North Atlantic Ocean on sub-seasonal to multi-decadal timescales. The NAO changes the atmospheric forcing at the ocean's surface, including winds and surface buoyancy fluxes, both of which are known to impact large-scale gyre circulation. However, the relative role of other physical processes (such as mesoscale eddies and topography) in influencing gyre circulation under NAO variability is not fully understood. Here, we analyze a series of ocean-sea ice simulations using a barotropic vorticity budget to understand the long-term response of the North Atlantic gyre circulation to NAO forcing. We find that for each standard deviation increase in the NAO index, the subtropical and subpolar gyres intensify by 0.90 and 3.41 Sv (1<span></span><math>\n <semantics>\n <mrow>\n <mspace></mspace>\n <mi>S</mi>\n <mi>v</mi>\n <mspace></mspace>\n <mo>≡</mo>\n <mn>1</mn>\n <msup>\n <mn>0</mn>\n <mn>6</mn>\n </msup>\n <mspace></mspace>\n <msup>\n <mi>m</mi>\n <mn>3</mn>\n </msup>\n <mspace></mspace>\n <msup>\n <mi>s</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> $\\,\\mathrm{S}\\mathrm{v}\\ \\equiv 1{0}^{6}\\,{\\mathrm{m}}^{3}\\,{\\mathrm{s}}^{-1}$</annotation>\n </semantics></math>), respectively. The NAO-induced wind stress anomalies drive approximately 90% of the change in the subtropical gyre's interior flow. However, in the subpolar gyre's interior, in addition to wind stress, flow-topography interactions, stratification (influenced by surface heat fluxes), and non-linear advection significantly influence the circulation. Along the western boundary the bottom pressure torque plays a key role in steering the flow, and the vorticity input by the bottom pressure torque is partly redistributed by non-linear advection. Our study highlights the importance of both atmospheric forcing and oceanic dynamical processes in driving long-term gyre circulation responses to the NAO.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"130 6","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JC021997","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JC021997","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

The North Atlantic Oscillation (NAO) is a leading mode of atmospheric variability, affecting the North Atlantic Ocean on sub-seasonal to multi-decadal timescales. The NAO changes the atmospheric forcing at the ocean's surface, including winds and surface buoyancy fluxes, both of which are known to impact large-scale gyre circulation. However, the relative role of other physical processes (such as mesoscale eddies and topography) in influencing gyre circulation under NAO variability is not fully understood. Here, we analyze a series of ocean-sea ice simulations using a barotropic vorticity budget to understand the long-term response of the North Atlantic gyre circulation to NAO forcing. We find that for each standard deviation increase in the NAO index, the subtropical and subpolar gyres intensify by 0.90 and 3.41 Sv (1 S v 1 0 6 m 3 s 1 $\,\mathrm{S}\mathrm{v}\ \equiv 1{0}^{6}\,{\mathrm{m}}^{3}\,{\mathrm{s}}^{-1}$ ), respectively. The NAO-induced wind stress anomalies drive approximately 90% of the change in the subtropical gyre's interior flow. However, in the subpolar gyre's interior, in addition to wind stress, flow-topography interactions, stratification (influenced by surface heat fluxes), and non-linear advection significantly influence the circulation. Along the western boundary the bottom pressure torque plays a key role in steering the flow, and the vorticity input by the bottom pressure torque is partly redistributed by non-linear advection. Our study highlights the importance of both atmospheric forcing and oceanic dynamical processes in driving long-term gyre circulation responses to the NAO.

北大西洋环流对北大西洋涛动的不对称响应
北大西洋涛动(NAO)是大气变率的主要模态,在亚季节到几十年的时间尺度上影响北大西洋。NAO改变了海洋表面的大气强迫,包括风和表面浮力通量,这两者都被认为会影响大范围的环流。然而,其他物理过程(如中尺度涡旋和地形)在影响NAO变率下环流环流中的相对作用尚未完全了解。在这里,我们分析了一系列使用正压涡度预算的海洋-海冰模拟,以了解北大西洋环流对NAO强迫的长期响应。我们发现NAO指数每增加一个标准差,副热带和次极环流分别增强0.90和3.41 Sv (1 Sv≡1 0 6 m³)s−1 $\,\mathrm{s} \mathrm{v}\ \equiv 1{0}^{6}\,{\mathrm{m}}^{3}\,{\mathrm{s}}^{-1}$)。nao引起的风应力异常约占副热带环流内部环流变化的90%。然而,在亚极环流内部,除了风应力外,气流-地形相互作用、分层(受地表热通量影响)和非线性平流对环流有显著影响。在西边界上,底压转矩对气流的转向起关键作用,由底压转矩输入的涡度通过非线性平流部分重新分布。我们的研究强调了大气强迫和海洋动力过程在驱动环流对NAO的长期响应中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research-Oceans
Journal of Geophysical Research-Oceans Earth and Planetary Sciences-Oceanography
CiteScore
7.00
自引率
13.90%
发文量
429
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信