Nanoparticles as an Alternative Strategy for the Rapid Detection of Mycobacterium tuberculosis Complex (MTBC): A Systematic Literature Review of In Vitro Studies
{"title":"Nanoparticles as an Alternative Strategy for the Rapid Detection of Mycobacterium tuberculosis Complex (MTBC): A Systematic Literature Review of In Vitro Studies","authors":"Abayeneh Girma, Fentaye Kassawmar, Yeshiwas Kassa, Yeshwas Asrat","doi":"10.1049/nbt2/4639233","DOIUrl":null,"url":null,"abstract":"<p>Worldwide, tuberculosis (TB) ranks as a second leading cause of death. The End TB strategy targets eliminating TB by 2030. Achieving this goal requires an early, accurate, and affordable diagnosis applicable in low- and middle-income countries; increasing the reach of point-of-care (POC) diagnostics is essential. Nanodiagnostics aims to enhance clinical diagnostic procedures with heightened sensitivity and accuracy by focusing on distinctive markers for early detection. A systematic search of research articles was conducted in four databases (PubMed, Scopus, Web of Science, and ScienceDirect) independently by two researchers. Publications retrieved in the independent search were mixed and imported into a single EndNote X8. The extraction of characteristics from the selected studies were carried out step by step by two independent researcher groups Abayeneh Girma and Fentaye Kassawmar and Yeshiwas Kassa and Yeshwas Asrat using a standardized data extraction format in Microsoft Excel 2021. Finally, the extracted data were combined and clearly presented in the table with the key information and findings. Inconsistencies between reviewers were resolved by discussion, and articles were included after consensus was reached. Totally, 2740 articles were retrieved, and 69 TB nanoparticle (NP)-based assays have fulfilled the inclusion criteria and included in this systematic review. The proposed platforms share the characteristics of accuracy, affordability, and swift time-to-result. Nanodiagnostics for TB now cover all clinical presentations of the disease, including active, drug-resistant, HIV-related, latent, and extrapulmonary TB. These advancements not only enhance the diagnostic landscape but also facilitate timely and effective treatment strategies, ultimately aiming to reduce the burden of TB worldwide. This review summarizes state-of-the-art knowledge of TB nanodiagnostics for the last 18 years. For fabrication concepts, detection strategies, and clinical performance, special consideration is given using various clinical specimens, and the suitability of TB nanodiagnostics for optimal MTB testing is evaluated. TB nanodiagnostics present a promising solution for meeting the stringent demands to end the TB epidemic by 2030.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"2025 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2/4639233","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/nbt2/4639233","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Worldwide, tuberculosis (TB) ranks as a second leading cause of death. The End TB strategy targets eliminating TB by 2030. Achieving this goal requires an early, accurate, and affordable diagnosis applicable in low- and middle-income countries; increasing the reach of point-of-care (POC) diagnostics is essential. Nanodiagnostics aims to enhance clinical diagnostic procedures with heightened sensitivity and accuracy by focusing on distinctive markers for early detection. A systematic search of research articles was conducted in four databases (PubMed, Scopus, Web of Science, and ScienceDirect) independently by two researchers. Publications retrieved in the independent search were mixed and imported into a single EndNote X8. The extraction of characteristics from the selected studies were carried out step by step by two independent researcher groups Abayeneh Girma and Fentaye Kassawmar and Yeshiwas Kassa and Yeshwas Asrat using a standardized data extraction format in Microsoft Excel 2021. Finally, the extracted data were combined and clearly presented in the table with the key information and findings. Inconsistencies between reviewers were resolved by discussion, and articles were included after consensus was reached. Totally, 2740 articles were retrieved, and 69 TB nanoparticle (NP)-based assays have fulfilled the inclusion criteria and included in this systematic review. The proposed platforms share the characteristics of accuracy, affordability, and swift time-to-result. Nanodiagnostics for TB now cover all clinical presentations of the disease, including active, drug-resistant, HIV-related, latent, and extrapulmonary TB. These advancements not only enhance the diagnostic landscape but also facilitate timely and effective treatment strategies, ultimately aiming to reduce the burden of TB worldwide. This review summarizes state-of-the-art knowledge of TB nanodiagnostics for the last 18 years. For fabrication concepts, detection strategies, and clinical performance, special consideration is given using various clinical specimens, and the suitability of TB nanodiagnostics for optimal MTB testing is evaluated. TB nanodiagnostics present a promising solution for meeting the stringent demands to end the TB epidemic by 2030.
期刊介绍:
Electrical and electronic engineers have a long and illustrious history of contributing new theories and technologies to the biomedical sciences. This includes the cable theory for understanding the transmission of electrical signals in nerve axons and muscle fibres; dielectric techniques that advanced the understanding of cell membrane structures and membrane ion channels; electron and atomic force microscopy for investigating cells at the molecular level.
Other engineering disciplines, along with contributions from the biological, chemical, materials and physical sciences, continue to provide groundbreaking contributions to this subject at the molecular and submolecular level. Our subject now extends from single molecule measurements using scanning probe techniques, through to interactions between cells and microstructures, micro- and nano-fluidics, and aspects of lab-on-chip technologies. The primary aim of IET Nanobiotechnology is to provide a vital resource for academic and industrial researchers operating in this exciting cross-disciplinary activity. We can only achieve this by publishing cutting edge research papers and expert review articles from the international engineering and scientific community. To attract such contributions we will exercise a commitment to our authors by ensuring that their manuscripts receive rapid constructive peer opinions and feedback across interdisciplinary boundaries.
IET Nanobiotechnology covers all aspects of research and emerging technologies including, but not limited to:
Fundamental theories and concepts applied to biomedical-related devices and methods at the micro- and nano-scale (including methods that employ electrokinetic, electrohydrodynamic, and optical trapping techniques)
Micromachining and microfabrication tools and techniques applied to the top-down approach to nanobiotechnology
Nanomachining and nanofabrication tools and techniques directed towards biomedical and biotechnological applications (e.g. applications of atomic force microscopy, scanning probe microscopy and related tools)
Colloid chemistry applied to nanobiotechnology (e.g. cosmetics, suntan lotions, bio-active nanoparticles)
Biosynthesis (also known as green synthesis) of nanoparticles; to be considered for publication, research papers in this area must be directed principally towards biomedical research and especially if they encompass in vivo models or proofs of concept. We welcome papers that are application-orientated or offer new concepts of substantial biomedical importance
Techniques for probing cell physiology, cell adhesion sites and cell-cell communication
Molecular self-assembly, including concepts of supramolecular chemistry, molecular recognition, and DNA nanotechnology
Societal issues such as health and the environment
Special issues. Call for papers:
Smart Nanobiosensors for Next-generation Biomedical Applications - https://digital-library.theiet.org/files/IET_NBT_CFP_SNNBA.pdf
Selected extended papers from the International conference of the 19th Asian BioCeramic Symposium - https://digital-library.theiet.org/files/IET_NBT_CFP_ABS.pdf