Intermittent Hypoxia Damages Tyrosine Hydroxylase-Containing Neurons in the Substantia Nigra and Locus Coeruleus but Not Hippocampal Neurons in Male Mouse Models of Early-Stage Sleep Apnea

IF 2.9 3区 医学 Q2 NEUROSCIENCES
Chia-Hui Chu, Yueh-Ching Chang, Kuang-Ting Liu, Yen-Chin Liu, Mei-Chuan Chou, Ching-Kuan Liu, Chu-Huang Chen, Junn-Liang Chang, Shiou-Lan Chen
{"title":"Intermittent Hypoxia Damages Tyrosine Hydroxylase-Containing Neurons in the Substantia Nigra and Locus Coeruleus but Not Hippocampal Neurons in Male Mouse Models of Early-Stage Sleep Apnea","authors":"Chia-Hui Chu,&nbsp;Yueh-Ching Chang,&nbsp;Kuang-Ting Liu,&nbsp;Yen-Chin Liu,&nbsp;Mei-Chuan Chou,&nbsp;Ching-Kuan Liu,&nbsp;Chu-Huang Chen,&nbsp;Junn-Liang Chang,&nbsp;Shiou-Lan Chen","doi":"10.1002/jnr.70050","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In sleep apnea, repeated hypovolemic ventilation or apnea in sleep leads to intermittent hypoxia (IH) of the brain. Thus, the impacts of sleep apnea on the brain need to be investigated. In this study, a mouse model with sleep-associated chronic IH and behavior tests was used to evaluate how IH impacts brain function and the expression of tyrosine hydroxylase (TH)-containing neurons in the substantia nigra, ventral tegmental area (VTA), and locus coeruleus. In an open-field test, mice subjected to chronic IH (5%–21% oxygen) for 10 and 20 days exhibited a significant decrease in spontaneous locomotor activity compared to the room air (RA, 21% oxygen) control mice. In the Y-maze test, the ability to recognize novel and familiar arms was similar between groups. In immunostaining of the brains of IH mice, TH-positive neurons in the substantia nigra, VTA, and locus coeruleus were significantly reduced compared to RA mice. Furthermore, in the brains of mice with decreased TH-positive neurons induced by IH, the expression of hippocampal neurons has not been affected. In the analysis of glial cells, in IH group mice, a significant increase of microglia was found in the substantia nigra, VTA, locus coeruleus, and hippocampus compared to the RA mice. These findings suggest that there is a loss of TH-containing neurons and neuronal inflammation in the substantia nigra, VTA, and locus coeruleus under chronic IH. Our findings provide precise evidence for the loss of TH-containing neurons in the setting of chronic IH mouse models, which can provide relevant empirical observations for clinicians.</p>\n </div>","PeriodicalId":16490,"journal":{"name":"Journal of Neuroscience Research","volume":"103 6","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnr.70050","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In sleep apnea, repeated hypovolemic ventilation or apnea in sleep leads to intermittent hypoxia (IH) of the brain. Thus, the impacts of sleep apnea on the brain need to be investigated. In this study, a mouse model with sleep-associated chronic IH and behavior tests was used to evaluate how IH impacts brain function and the expression of tyrosine hydroxylase (TH)-containing neurons in the substantia nigra, ventral tegmental area (VTA), and locus coeruleus. In an open-field test, mice subjected to chronic IH (5%–21% oxygen) for 10 and 20 days exhibited a significant decrease in spontaneous locomotor activity compared to the room air (RA, 21% oxygen) control mice. In the Y-maze test, the ability to recognize novel and familiar arms was similar between groups. In immunostaining of the brains of IH mice, TH-positive neurons in the substantia nigra, VTA, and locus coeruleus were significantly reduced compared to RA mice. Furthermore, in the brains of mice with decreased TH-positive neurons induced by IH, the expression of hippocampal neurons has not been affected. In the analysis of glial cells, in IH group mice, a significant increase of microglia was found in the substantia nigra, VTA, locus coeruleus, and hippocampus compared to the RA mice. These findings suggest that there is a loss of TH-containing neurons and neuronal inflammation in the substantia nigra, VTA, and locus coeruleus under chronic IH. Our findings provide precise evidence for the loss of TH-containing neurons in the setting of chronic IH mouse models, which can provide relevant empirical observations for clinicians.

间歇性缺氧损伤早期睡眠呼吸暂停雄性小鼠黑质和蓝斑中含有酪氨酸羟化酶的神经元,但未损伤海马神经元
在睡眠呼吸暂停中,反复低血容量通气或睡眠呼吸暂停导致间歇性大脑缺氧(IH)。因此,睡眠呼吸暂停对大脑的影响需要进一步研究。在本研究中,采用睡眠相关慢性IH小鼠模型和行为测试来评估IH如何影响脑功能以及黑质、腹侧被盖区(VTA)和蓝斑中含有酪氨酸羟化酶(TH)的神经元的表达。在一项露天试验中,与室内空气(RA, 21%氧气)对照小鼠相比,慢性IH(5%-21%氧气)治疗10天和20天的小鼠自发性运动活动显著减少。在y形迷宫测试中,两组之间识别新手臂和熟悉手臂的能力是相似的。在IH小鼠的大脑免疫染色中,与RA小鼠相比,黑质、VTA和蓝斑中th阳性神经元明显减少。此外,在IH诱导th阳性神经元减少的小鼠大脑中,海马神经元的表达未受影响。在胶质细胞分析中,IH组小鼠的黑质、VTA、蓝斑和海马的小胶质细胞较RA组小鼠明显增加。这些发现表明慢性IH下黑质、VTA和蓝斑中含有th的神经元丢失和神经元炎症。我们的研究结果为慢性IH小鼠模型中含th神经元的丢失提供了精确的证据,可以为临床医生提供相关的经验观察。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neuroscience Research
Journal of Neuroscience Research 医学-神经科学
CiteScore
9.50
自引率
2.40%
发文量
145
审稿时长
1 months
期刊介绍: The Journal of Neuroscience Research (JNR) publishes novel research results that will advance our understanding of the development, function and pathophysiology of the nervous system, using molecular, cellular, systems, and translational approaches. JNR covers both basic research and clinical aspects of neurology, neuropathology, psychiatry or psychology. The journal focuses on uncovering the intricacies of brain structure and function. Research published in JNR covers all species from invertebrates to humans, and the reports inform the readers about the function and organization of the nervous system, with emphasis on how disease modifies the function and organization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信