Sediment Depositional History and Processes for the Eurasian Basin Since 54 Ma, Arctic Ocean

IF 2.9 2区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Pingchuan Tan, Chunyang Wang, Fei Wang, Jiabiao Li
{"title":"Sediment Depositional History and Processes for the Eurasian Basin Since 54 Ma, Arctic Ocean","authors":"Pingchuan Tan,&nbsp;Chunyang Wang,&nbsp;Fei Wang,&nbsp;Jiabiao Li","doi":"10.1029/2025GC012201","DOIUrl":null,"url":null,"abstract":"<p>The Eurasian Basin in the Arctic Ocean, comprising the Amundsen and Nansen Basins separated by the Gakkel Ridge, has sediment deposits up to 4–5 km thick. However, its sedimentation history and processes remain poorly understood. Using 31 seismic profiles, we have estimated deposition rates for 54 Ma. From 54 to 45 Ma, the Nansen Basin averaged ∼15 cm/kyr, while the Amundsen Basin exhibited higher but variable rates (15–50 cm/kyr). From 45 to 20 Ma, the Amundsen Basin's rates decreased significantly, dropping to 6–7 cm/kyr (34–45 Ma) and ∼3.5 cm/kyr (20–34 Ma). Meanwhile, the Nansen Basin maintained higher rates (∼12 cm/kyr to ∼5 cm/kyr). After 20 Ma, sedimentation rates diverged further. The Nansen Basin stabilized at ∼5 cm/kyr and was significantly influenced by glaciation and iceberg rafting, while the Amundsen Basin continued to decline to ∼2 cm/kyr, with pelagic sediments dominated by sea-ice and iceberg rafting, and debris flows near the Lomonosov Ridge. The Nansen Basin's higher rates are likely due to its proximity to the Barents and Laptev Sea shelves, while the general declined rates across the basin are related to basin expansion, climate cooling, and reduced tectonic activity. Additionally, the Eurasian Basin's sedimentation is shaped by two phases of Siberian river activity. Before 45 Ma, the Lena and Indigirka rivers dominated, particularly near the eastern Laptev Sea Shelf. After 45 Ma, the Pyasina and Yenisey rivers became the main contributors, with significant sediment delivery through the St. Anna Trough. Sediment deposits (0.6–1 km) along the Gakkel Ridge (70°E−100°E) are also caused by these processes.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"26 6","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025GC012201","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025GC012201","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Eurasian Basin in the Arctic Ocean, comprising the Amundsen and Nansen Basins separated by the Gakkel Ridge, has sediment deposits up to 4–5 km thick. However, its sedimentation history and processes remain poorly understood. Using 31 seismic profiles, we have estimated deposition rates for 54 Ma. From 54 to 45 Ma, the Nansen Basin averaged ∼15 cm/kyr, while the Amundsen Basin exhibited higher but variable rates (15–50 cm/kyr). From 45 to 20 Ma, the Amundsen Basin's rates decreased significantly, dropping to 6–7 cm/kyr (34–45 Ma) and ∼3.5 cm/kyr (20–34 Ma). Meanwhile, the Nansen Basin maintained higher rates (∼12 cm/kyr to ∼5 cm/kyr). After 20 Ma, sedimentation rates diverged further. The Nansen Basin stabilized at ∼5 cm/kyr and was significantly influenced by glaciation and iceberg rafting, while the Amundsen Basin continued to decline to ∼2 cm/kyr, with pelagic sediments dominated by sea-ice and iceberg rafting, and debris flows near the Lomonosov Ridge. The Nansen Basin's higher rates are likely due to its proximity to the Barents and Laptev Sea shelves, while the general declined rates across the basin are related to basin expansion, climate cooling, and reduced tectonic activity. Additionally, the Eurasian Basin's sedimentation is shaped by two phases of Siberian river activity. Before 45 Ma, the Lena and Indigirka rivers dominated, particularly near the eastern Laptev Sea Shelf. After 45 Ma, the Pyasina and Yenisey rivers became the main contributors, with significant sediment delivery through the St. Anna Trough. Sediment deposits (0.6–1 km) along the Gakkel Ridge (70°E−100°E) are also caused by these processes.

北冰洋54 Ma以来欧亚盆地沉积史与沉积过程
位于北冰洋的欧亚盆地,由被Gakkel山脊分隔的阿蒙森盆地和南森盆地组成,沉积物厚度可达4-5公里。然而,对其沉积历史和沉积过程仍知之甚少。利用31条地震剖面,我们估计了54 Ma的沉积速率。从54 ~ 45 Ma, Nansen盆地平均为~ 15 cm/kyr,而Amundsen盆地表现出更高的速率(15 ~ 50 cm/kyr)。从45 ~ 20 Ma, Amundsen盆地的速率显著下降,分别降至6 ~ 7 cm/kyr (34 ~ 45 Ma)和~ 3.5 cm/kyr (20 ~ 34 Ma)。同时,南森盆地保持较高的速率(~ 12 cm/kyr ~ ~ 5 cm/kyr)。20 Ma以后,沉积速率进一步分化。南森盆地稳定在~ 5 cm/kyr,受到冰川作用和冰山漂流的显著影响,而阿蒙森盆地继续下降至~ 2 cm/kyr,远洋沉积物以海冰和冰山漂流为主,并在罗蒙诺索夫海岭附近发生泥石流。南森盆地较高的速率可能是由于其靠近巴伦支海和拉普捷夫海大陆架,而整个盆地的总体速率下降与盆地扩张、气候变冷和构造活动减少有关。此外,欧亚盆地的沉积是由西伯利亚河活动的两个阶段形成的。在45 Ma之前,Lena和Indigirka河占主导地位,特别是在拉普捷夫海陆架东部附近。45 Ma之后,Pyasina河和Yenisey河成为主要贡献者,通过圣安娜槽输送大量沉积物。沿Gakkel Ridge(70°E ~ 100°E)的沉积物沉积(0.6-1 km)也是由这些过程引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geochemistry Geophysics Geosystems
Geochemistry Geophysics Geosystems 地学-地球化学与地球物理
CiteScore
5.90
自引率
11.40%
发文量
252
审稿时长
1 months
期刊介绍: Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged. Areas of interest for this peer-reviewed journal include, but are not limited to: The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution Principles and applications of geochemical proxies to studies of Earth history The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信