Jiang He, Bin Zhang, Hufei Zhang, Qiang Tu, Xi Chen, Yumin Qiu, Zhefu Liu, Wenhao Xia, Xing Wu, Jun Tao
{"title":"M1 Macrophage is a Novel Potential Trigger for Endothelial Senescence: Role of Exosomal miR-155 Targeting SOCS1 Signal","authors":"Jiang He, Bin Zhang, Hufei Zhang, Qiang Tu, Xi Chen, Yumin Qiu, Zhefu Liu, Wenhao Xia, Xing Wu, Jun Tao","doi":"10.1155/humu/6771390","DOIUrl":null,"url":null,"abstract":"<p>Age-related proinflammatory microenvironment induced by infiltration of M1 macrophages promotes endothelial senescence-mediated vascular diseases. Macrophages exert their immunomodulatory effects by releasing exosomes. However, the underlying mechanisms governing endothelial cell senescence induced by exosomes derived from M1 macrophages (M1-Exo) remain elusive. In this study, we delved into the intricate interplay between endothelial function and M1 macrophage abundance in the aortas and explored the pivotal role of M1-Exo in endothelial cell senescence and its associated molecular pathways. Our results unveiled a compelling correlation between the infiltration of M1 macrophages in the aortas of aged mice and impaired endothelium-dependent dilatation. Coculturing endothelial cells with M1-Exo engendered the acquisition of a senescent phenotype, marked by increased senescence-associated beta-galactosidase level and a distinct senescence-associated secretory profile. Endothelial cells cocultured with M1-Exo exhibited pronounced signs of cell cycle arrest, accompanied by mitochondrial oxidative damage and dysfunction. Bioinformatics analysis and subsequent validation identified high expression of miR-155 in M1-Exo. The transfer of miR-155 contributed to the prosenescence effect of M1-Exo by targeting SOCS1, subsequently activating JAK2/STAT3 signaling. The administration of M1-Exo into young mice instigated endothelial dysfunction and increased ROS production. Notably, the reduction of miR-155 in M1-Exo partially mitigated such deleterious effects. Our findings demonstrate that exosomal miR-155, originating from M1 macrophages, elicits endothelial cell senescence. The present study brings a groundbreaking insight into the communication between M1 macrophages and endothelial cells as a mediator of vascular aging, providing a promising target for interventions in age-related vascular diseases.</p>","PeriodicalId":13061,"journal":{"name":"Human Mutation","volume":"2025 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/humu/6771390","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Mutation","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/humu/6771390","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Age-related proinflammatory microenvironment induced by infiltration of M1 macrophages promotes endothelial senescence-mediated vascular diseases. Macrophages exert their immunomodulatory effects by releasing exosomes. However, the underlying mechanisms governing endothelial cell senescence induced by exosomes derived from M1 macrophages (M1-Exo) remain elusive. In this study, we delved into the intricate interplay between endothelial function and M1 macrophage abundance in the aortas and explored the pivotal role of M1-Exo in endothelial cell senescence and its associated molecular pathways. Our results unveiled a compelling correlation between the infiltration of M1 macrophages in the aortas of aged mice and impaired endothelium-dependent dilatation. Coculturing endothelial cells with M1-Exo engendered the acquisition of a senescent phenotype, marked by increased senescence-associated beta-galactosidase level and a distinct senescence-associated secretory profile. Endothelial cells cocultured with M1-Exo exhibited pronounced signs of cell cycle arrest, accompanied by mitochondrial oxidative damage and dysfunction. Bioinformatics analysis and subsequent validation identified high expression of miR-155 in M1-Exo. The transfer of miR-155 contributed to the prosenescence effect of M1-Exo by targeting SOCS1, subsequently activating JAK2/STAT3 signaling. The administration of M1-Exo into young mice instigated endothelial dysfunction and increased ROS production. Notably, the reduction of miR-155 in M1-Exo partially mitigated such deleterious effects. Our findings demonstrate that exosomal miR-155, originating from M1 macrophages, elicits endothelial cell senescence. The present study brings a groundbreaking insight into the communication between M1 macrophages and endothelial cells as a mediator of vascular aging, providing a promising target for interventions in age-related vascular diseases.
期刊介绍:
Human Mutation is a peer-reviewed journal that offers publication of original Research Articles, Methods, Mutation Updates, Reviews, Database Articles, Rapid Communications, and Letters on broad aspects of mutation research in humans. Reports of novel DNA variations and their phenotypic consequences, reports of SNPs demonstrated as valuable for genomic analysis, descriptions of new molecular detection methods, and novel approaches to clinical diagnosis are welcomed. Novel reports of gene organization at the genomic level, reported in the context of mutation investigation, may be considered. The journal provides a unique forum for the exchange of ideas, methods, and applications of interest to molecular, human, and medical geneticists in academic, industrial, and clinical research settings worldwide.