Shengtao Ye, Fuzhong Yu, Min Hao, Menghai Wu, Dandan Chen, Changsheng Bu, Ping Lu, Yuntan Du, Kaige Cui
{"title":"Leakage Diagnosis Technologies for Heating Pipe Networks: A Comprehensive Review of Currently Used Methods","authors":"Shengtao Ye, Fuzhong Yu, Min Hao, Menghai Wu, Dandan Chen, Changsheng Bu, Ping Lu, Yuntan Du, Kaige Cui","doi":"10.1155/er/8824853","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The development of district heating systems (DHSs) has increased the demand for leakage diagnosis in heating networks due to its impact on thermal efficiency, heating effectiveness, and security. This paper introduces various leakage diagnosis methods, provides solutions to the challenges of current diagnosis methods, and makes suggestions for future research. Internal methods include transient analysis, machine learning (ML), and negative pressure wave (NPW) technology. External methods include unmanned aerial vehicle (UAV) infrared thermography (UAIT), acoustic sensing, and fiber optic sensing methods. Some of these methods diagnose leakages through mathematical modeling and simulations, while others use various sensors to monitor changes in the internal medium of the pipeline to identify leakages. Additionally, UAIT and other special equipment are employed for leakage diagnosis. Detailed diagnosis principles of these methods as well as the solutions provided to address existing diagnosis bottlenecks were also introduced. Furthermore, this paper also reviews the performance of these diagnosis methods in terms of sensitivity, resolution, monitoring, accuracy, and cost. Based on the characteristics of each method, it offers guidance on the selection of pipeline leakage diagnosis methods for practical engineering applications.</p>\n </div>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":"2025 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/8824853","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/er/8824853","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The development of district heating systems (DHSs) has increased the demand for leakage diagnosis in heating networks due to its impact on thermal efficiency, heating effectiveness, and security. This paper introduces various leakage diagnosis methods, provides solutions to the challenges of current diagnosis methods, and makes suggestions for future research. Internal methods include transient analysis, machine learning (ML), and negative pressure wave (NPW) technology. External methods include unmanned aerial vehicle (UAV) infrared thermography (UAIT), acoustic sensing, and fiber optic sensing methods. Some of these methods diagnose leakages through mathematical modeling and simulations, while others use various sensors to monitor changes in the internal medium of the pipeline to identify leakages. Additionally, UAIT and other special equipment are employed for leakage diagnosis. Detailed diagnosis principles of these methods as well as the solutions provided to address existing diagnosis bottlenecks were also introduced. Furthermore, this paper also reviews the performance of these diagnosis methods in terms of sensitivity, resolution, monitoring, accuracy, and cost. Based on the characteristics of each method, it offers guidance on the selection of pipeline leakage diagnosis methods for practical engineering applications.
期刊介绍:
The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability.
IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents:
-Biofuels and alternatives
-Carbon capturing and storage technologies
-Clean coal technologies
-Energy conversion, conservation and management
-Energy storage
-Energy systems
-Hybrid/combined/integrated energy systems for multi-generation
-Hydrogen energy and fuel cells
-Hydrogen production technologies
-Micro- and nano-energy systems and technologies
-Nuclear energy
-Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass)
-Smart energy system