Vision-Language Models for Automated Chest X-ray Interpretation: Leveraging ViT and GPT-2

IF 1.8 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Md. Rakibul Islam, Md. Zahid Hossain, Mustofa Ahmed, Most. Sharmin Sultana Samu
{"title":"Vision-Language Models for Automated Chest X-ray Interpretation: Leveraging ViT and GPT-2","authors":"Md. Rakibul Islam,&nbsp;Md. Zahid Hossain,&nbsp;Mustofa Ahmed,&nbsp;Most. Sharmin Sultana Samu","doi":"10.1002/eng2.70220","DOIUrl":null,"url":null,"abstract":"<p>Radiology plays a pivotal role in modern medicine due to its non-invasive diagnostic capabilities. However, the manual generation of unstructured medical reports is time-consuming and prone to errors. It creates a significant bottleneck in clinical workflows. Despite advancements in AI-generated radiology reports, challenges remain in achieving detailed and accurate report generation. In this study, we have evaluated different combinations of multimodal models that integrate Computer Vision and Natural Language Processing to generate comprehensive radiology reports. We employed a pretrained Vision Transformer (ViT-B16) and a SWIN Transformer as the image encoders. The BART and GPT-2 models serve as the textual decoders. We used Chest X-ray images and reports from the IU-Xray dataset to evaluate the usability of the SWIN Transformer-BART, SWIN Transformer-GPT-2, ViT-B16-BART, and ViT-B16-GPT-2 models for report generation. We aimed to find the best combination among the models. The SWIN-BART model performs as the best-performing model among the four models, achieving remarkable results in almost all the evaluation metrics like ROUGE, BLEU, and BERTScore.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 6","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70220","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Radiology plays a pivotal role in modern medicine due to its non-invasive diagnostic capabilities. However, the manual generation of unstructured medical reports is time-consuming and prone to errors. It creates a significant bottleneck in clinical workflows. Despite advancements in AI-generated radiology reports, challenges remain in achieving detailed and accurate report generation. In this study, we have evaluated different combinations of multimodal models that integrate Computer Vision and Natural Language Processing to generate comprehensive radiology reports. We employed a pretrained Vision Transformer (ViT-B16) and a SWIN Transformer as the image encoders. The BART and GPT-2 models serve as the textual decoders. We used Chest X-ray images and reports from the IU-Xray dataset to evaluate the usability of the SWIN Transformer-BART, SWIN Transformer-GPT-2, ViT-B16-BART, and ViT-B16-GPT-2 models for report generation. We aimed to find the best combination among the models. The SWIN-BART model performs as the best-performing model among the four models, achieving remarkable results in almost all the evaluation metrics like ROUGE, BLEU, and BERTScore.

自动胸部x线解读的视觉语言模型:利用ViT和GPT-2
放射学由于其非侵入性诊断能力在现代医学中起着举足轻重的作用。然而,手工生成非结构化的医疗报告既耗时又容易出错。它在临床工作流程中造成了严重的瓶颈。尽管人工智能生成的放射学报告取得了进步,但在实现详细和准确的报告生成方面仍然存在挑战。在这项研究中,我们评估了集成计算机视觉和自然语言处理的多模态模型的不同组合,以生成全面的放射学报告。我们使用预训练视觉变压器(ViT-B16)和SWIN变压器作为图像编码器。BART和GPT-2模型作为文本解码器。我们使用来自iu - x射线数据集的胸部x线图像和报告来评估SWIN Transformer-BART、SWIN Transformer-GPT-2、viti - b16 - bart和viti - b16 - gpt -2模型在报告生成中的可用性。我们的目标是找到模型之间的最佳组合。swwin - bart模型是四个模型中表现最好的模型,在ROUGE、BLEU、BERTScore等几乎所有的评价指标上都取得了显著的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信