Raghav Dwivedi, D. K. Srivastava, Vinod Kumar Singh
{"title":"Wearable Textile Antenna With Low SAR and High Fidelity for BAN and Medical Applications","authors":"Raghav Dwivedi, D. K. Srivastava, Vinod Kumar Singh","doi":"10.1002/jnm.70058","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper presents a novel wearable antenna fabricated using denim material, designed for flexible electronics and medical monitoring applications. The proposed antenna leverages common jean fabric as the substrate material, offering a cost-effective and readily available solution while combining esthetic appeal with practical functionality through its unique configuration. Operating across 2.269–19.42 GHz with a maximum gain of 6.75 dB, the antenna achieves an enhanced bandwidth of 158.15%. Notably, the design measured as 0.488<i>λ</i><sub>o</sub> <b>×</b> 0.488<i>λ</i><sub>o</sub> × 0.008<i>λ</i><sub>o</sub> exhibits a low specific absorption rate (SAR) compared to FCC standards that is 1.6 W/kg averaged over 1 g of tissue, making it particularly suitable for medical monitoring applications. We obtained a maximum SAR value for the antenna as 1.61, 1.01 W/kg for 1 and 10 g at 2 mm from the body phantom, 0.488 and 0.769 W/kg for 1 and 10 g when placed at 5 mm from the human phantom, and 1.02, 0.73 W/kg for 1 and 10 g at on-body placement of the antenna. Experimental results demonstrate the antenna's effectiveness for vital signs surveillance while maintaining wearer safety and comfort. The use of denim as the substrate material not only ensures flexibility and durability but also provides an eco-friendly approach by utilizing common textile materials. The high-fidelity factor and wideband characteristics ensure reliable data transmission, making this design a promising solution for next-generation wearable healthcare devices.</p>\n </div>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":"38 3","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.70058","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a novel wearable antenna fabricated using denim material, designed for flexible electronics and medical monitoring applications. The proposed antenna leverages common jean fabric as the substrate material, offering a cost-effective and readily available solution while combining esthetic appeal with practical functionality through its unique configuration. Operating across 2.269–19.42 GHz with a maximum gain of 6.75 dB, the antenna achieves an enhanced bandwidth of 158.15%. Notably, the design measured as 0.488λo× 0.488λo × 0.008λo exhibits a low specific absorption rate (SAR) compared to FCC standards that is 1.6 W/kg averaged over 1 g of tissue, making it particularly suitable for medical monitoring applications. We obtained a maximum SAR value for the antenna as 1.61, 1.01 W/kg for 1 and 10 g at 2 mm from the body phantom, 0.488 and 0.769 W/kg for 1 and 10 g when placed at 5 mm from the human phantom, and 1.02, 0.73 W/kg for 1 and 10 g at on-body placement of the antenna. Experimental results demonstrate the antenna's effectiveness for vital signs surveillance while maintaining wearer safety and comfort. The use of denim as the substrate material not only ensures flexibility and durability but also provides an eco-friendly approach by utilizing common textile materials. The high-fidelity factor and wideband characteristics ensure reliable data transmission, making this design a promising solution for next-generation wearable healthcare devices.
期刊介绍:
Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models.
The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics.
Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.