Recent Advances in Sn-Based Heterojunction-Type Anode Materials for Alkali-Ion Batteries

IF 24.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Carbon Energy Pub Date : 2025-03-10 DOI:10.1002/cey2.703
Hui Li, Zhiqiang Liu, Lei Li, Yehong Zhang, Zeheng Li, Huixin Lan, Zhenhe Zhu, Yuchen Wu, Jiajia Li, Chuanbo Zheng, Jun Lu
{"title":"Recent Advances in Sn-Based Heterojunction-Type Anode Materials for Alkali-Ion Batteries","authors":"Hui Li,&nbsp;Zhiqiang Liu,&nbsp;Lei Li,&nbsp;Yehong Zhang,&nbsp;Zeheng Li,&nbsp;Huixin Lan,&nbsp;Zhenhe Zhu,&nbsp;Yuchen Wu,&nbsp;Jiajia Li,&nbsp;Chuanbo Zheng,&nbsp;Jun Lu","doi":"10.1002/cey2.703","DOIUrl":null,"url":null,"abstract":"<p>The urgent demand for clean energy solutions has intensified the search for advanced storage materials, with rechargeable alkali-ion batteries (AIBs) playing a pivotal role in electrochemical energy storage. Enhancing electrode performance is critical to addressing the increasing need for high-energy and high-power AIBs. Next-generation anode materials face significant challenges, including limited energy storage capacities and complex reaction mechanisms that complicate structural modeling. Sn-based materials have emerged as promising candidates for AIBs due to their inherent advantages. Recent research has increasingly focused on the development of heterojunctions as a strategy to enhance the performance of Sn-based anode materials. Despite significant advances in this field, comprehensive reviews summarizing the latest developments are still sparse. This review provides a detailed overview of recent progress in Sn-based heterojunction-type anode materials. It begins with an explanation of the concept of heterojunctions, including their fabrication, characterization, and classification. Cutting-edge research on Sn-based heterojunction-type anodes for AIBs is highlighted. Finally, the review summarizes the latest advancements in heterojunction technology and discusses future directions for research and development in this area.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"7 5","pages":""},"PeriodicalIF":24.2000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.703","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.703","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The urgent demand for clean energy solutions has intensified the search for advanced storage materials, with rechargeable alkali-ion batteries (AIBs) playing a pivotal role in electrochemical energy storage. Enhancing electrode performance is critical to addressing the increasing need for high-energy and high-power AIBs. Next-generation anode materials face significant challenges, including limited energy storage capacities and complex reaction mechanisms that complicate structural modeling. Sn-based materials have emerged as promising candidates for AIBs due to their inherent advantages. Recent research has increasingly focused on the development of heterojunctions as a strategy to enhance the performance of Sn-based anode materials. Despite significant advances in this field, comprehensive reviews summarizing the latest developments are still sparse. This review provides a detailed overview of recent progress in Sn-based heterojunction-type anode materials. It begins with an explanation of the concept of heterojunctions, including their fabrication, characterization, and classification. Cutting-edge research on Sn-based heterojunction-type anodes for AIBs is highlighted. Finally, the review summarizes the latest advancements in heterojunction technology and discusses future directions for research and development in this area.

Abstract Image

碱离子电池用锡基异质结型负极材料研究进展
对清洁能源解决方案的迫切需求加强了对先进储能材料的探索,可充电碱离子电池(AIBs)在电化学储能中发挥着关键作用。提高电极性能对于解决对高能量和高功率aib日益增长的需求至关重要。下一代阳极材料面临着巨大的挑战,包括有限的能量存储能力和复杂的反应机制,使结构建模复杂化。锡基材料由于其固有的优势而成为有希望的候选材料。近年来,研究人员越来越关注异质结的发展,以提高锡基阳极材料的性能。尽管这一领域取得了重大进展,但总结最新发展的综合评论仍然很少。本文综述了近年来锡基异质结型阳极材料的研究进展。它首先解释了异质结的概念,包括它们的制造、表征和分类。重点介绍了锡基异质结型AIBs阳极的最新研究进展。最后,综述了异质结技术的最新进展,并对未来的研究发展方向进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Energy
Carbon Energy Multiple-
CiteScore
25.70
自引率
10.70%
发文量
116
审稿时长
4 weeks
期刊介绍: Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信