Deep Convolutional Neural Networks for Plant Disease Detection: A Mobile Application Approach (Agri Bot)

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hegazi Ibrahim, Abdelmoty M. Ahmed, Belgacem Bouallegue, Mahmoud M. Khattab, Mohab Abd El-Fattah, Nesma Abd El-Mawla
{"title":"Deep Convolutional Neural Networks for Plant Disease Detection: A Mobile Application Approach (Agri Bot)","authors":"Hegazi Ibrahim,&nbsp;Abdelmoty M. Ahmed,&nbsp;Belgacem Bouallegue,&nbsp;Mahmoud M. Khattab,&nbsp;Mohab Abd El-Fattah,&nbsp;Nesma Abd El-Mawla","doi":"10.1155/int/7644407","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Plant diseases imperil global food security, decimating crop yields and endangering farmers’ livelihoods. Rapid, accurate detection remains a challenge, particularly in resource-constrained environments lacking portable tools. Our contribution, Agri Bot, introduces a pioneering deep convolutional neural network (CNN) model, uniquely optimized for mobile deployment, transforming plant disease diagnosis. This novel model integrates a lightweight architecture with advanced feature extraction, achieving an exceptional 97.30% accuracy and 98.76% area under the curve (AUC). Unlike computationally intensive traditional CNNs, Agri Bot’s innovative design—featuring a hybrid convolutional autoencoder, max pooling, and dropout layers—ensures high-speed, real-time performance on mobile devices. Comparative studies reveal Agri Bot’s superiority, surpassing state-of-the-art models like VGG16 (71.48%) and ResNet50 (96.46%), while rivaling InceptionV3 (99.07%) with significantly lower computational demands. By delivering precise, accessible diagnostics to remote regions, Agri Bot revolutionizes agricultural disease management, enhancing crop resilience and global food security.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/7644407","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/7644407","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Plant diseases imperil global food security, decimating crop yields and endangering farmers’ livelihoods. Rapid, accurate detection remains a challenge, particularly in resource-constrained environments lacking portable tools. Our contribution, Agri Bot, introduces a pioneering deep convolutional neural network (CNN) model, uniquely optimized for mobile deployment, transforming plant disease diagnosis. This novel model integrates a lightweight architecture with advanced feature extraction, achieving an exceptional 97.30% accuracy and 98.76% area under the curve (AUC). Unlike computationally intensive traditional CNNs, Agri Bot’s innovative design—featuring a hybrid convolutional autoencoder, max pooling, and dropout layers—ensures high-speed, real-time performance on mobile devices. Comparative studies reveal Agri Bot’s superiority, surpassing state-of-the-art models like VGG16 (71.48%) and ResNet50 (96.46%), while rivaling InceptionV3 (99.07%) with significantly lower computational demands. By delivering precise, accessible diagnostics to remote regions, Agri Bot revolutionizes agricultural disease management, enhancing crop resilience and global food security.

用于植物病害检测的深度卷积神经网络:一种移动应用方法(Agri Bot)
植物病害危及全球粮食安全,使作物减产,危及农民生计。快速、准确的检测仍然是一个挑战,特别是在缺乏便携式工具的资源有限的环境中。我们的贡献,Agri Bot,引入了一个开创性的深度卷积神经网络(CNN)模型,该模型针对移动部署进行了独特的优化,改变了植物疾病诊断。这种新颖的模型将轻量级架构与先进的特征提取相结合,实现了97.30%的准确率和98.76%的曲线下面积(AUC)。与计算密集型的传统cnn不同,Agri Bot的创新设计——以混合卷积自动编码器、最大池化和退出层为特色——确保了在移动设备上的高速实时性能。对比研究表明,Agri Bot的优势,超过了VGG16(71.48%)和ResNet50(96.46%)等最先进的模型,而与InceptionV3(99.07%)相比,计算需求明显更低。通过向偏远地区提供精确、便捷的诊断方法,Agri Bot彻底改变了农业疾病管理,增强了作物抗灾能力和全球粮食安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信