{"title":"An Anisotropic Metamaterial Cover Layer for Scan Range Enhancement of Patch-Antenna Phased Arrays in Both Principal Planes","authors":"Mohammad Soltani;George V. Eleftheriades","doi":"10.1109/OJAP.2025.3548005","DOIUrl":null,"url":null,"abstract":"This work introduces a metamaterial cover layer designed to extend the scan range of patch-antenna phased arrays in both principal planes without compromising directivity. The key innovation lies in the anisotropic properties of the cover layer which suppress the excitation of the fundamental surface-wave (SW) mode, effectively mitigating scan blindness within the desired angular range. This suppression mechanism is simply not possible with a conventional dielectric-slab wide-angle impedance matching (WAIM) layer. The anisotropic slab SW suppression key mechanism is analyzed using the transverse resonance technique, yielding design equations for practical implementation. The metamaterial cover uniquely combines a wire medium (WM) slab and an artificial dielectric layer. This combination addresses two critical limitations of wide-angle scanning phased arrays: scan blindness and mutual coupling. The performance of the metamaterial cover is analyzed using the current sheet model and the spectral domain Green’s function of the stratified dielectric media, incorporating a detailed model of the WM slab. Results demonstrate an improvement in scan range across more than 10% fractional bandwidth. To validate the concept, a prototype is fabricated and applied to a home-made <inline-formula> <tex-math>$8\\times 8$ </tex-math></inline-formula>-element patch-antenna phased array with half-wavelength element spacing and a limited scan range. Crucially, in the E-plane, where surface waves limit performance in the bare array, the scan range is dramatically increased from ±30° to ±50°. The prototype achieves a final scan range of ±50° in the E-plane and ±60° in the H-plane, experimentally confirming the effectiveness of the proposed metamaterial cover in enabling wide-angle scanning.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 3","pages":"759-773"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10909674","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Antennas and Propagation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10909674/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This work introduces a metamaterial cover layer designed to extend the scan range of patch-antenna phased arrays in both principal planes without compromising directivity. The key innovation lies in the anisotropic properties of the cover layer which suppress the excitation of the fundamental surface-wave (SW) mode, effectively mitigating scan blindness within the desired angular range. This suppression mechanism is simply not possible with a conventional dielectric-slab wide-angle impedance matching (WAIM) layer. The anisotropic slab SW suppression key mechanism is analyzed using the transverse resonance technique, yielding design equations for practical implementation. The metamaterial cover uniquely combines a wire medium (WM) slab and an artificial dielectric layer. This combination addresses two critical limitations of wide-angle scanning phased arrays: scan blindness and mutual coupling. The performance of the metamaterial cover is analyzed using the current sheet model and the spectral domain Green’s function of the stratified dielectric media, incorporating a detailed model of the WM slab. Results demonstrate an improvement in scan range across more than 10% fractional bandwidth. To validate the concept, a prototype is fabricated and applied to a home-made $8\times 8$ -element patch-antenna phased array with half-wavelength element spacing and a limited scan range. Crucially, in the E-plane, where surface waves limit performance in the bare array, the scan range is dramatically increased from ±30° to ±50°. The prototype achieves a final scan range of ±50° in the E-plane and ±60° in the H-plane, experimentally confirming the effectiveness of the proposed metamaterial cover in enabling wide-angle scanning.