{"title":"Preassigned-Time Sliding-Mode Control of Chaotic Memristive Neural Networks With Time-Varying Delays","authors":"Guoqing Gao;Hailong Ge;Gaohua Wang;Leimin Wang","doi":"10.1109/TCSII.2025.3559558","DOIUrl":null,"url":null,"abstract":"Preassigned-time (PASST) control of memrisitive neural networks has been a hot research point recently. Different from the finite-time control with stable time dependent on the initial condition of the system, this brief studies the PASST control, and the stable time of which is uncorrelated with the initial condition and can be set in advance. For a class of chaotic memristive neural networks with time delays, a sliding-mode based approach is designed to realize the PASST stability. Different from the finite-time stability, the upper bound of stable time is not related to or constricted by the initial condition, and it can be arbitrarily defined for practical requirement. Moreover, as the special cases, the exponential stability and fixed-time stability are also presented via the same framework of the sliding-mode based approach. Finally, a chaotic numerical example with several comparative cases are given to verify the validity of the control method of PASST stability results.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"72 6","pages":"823-827"},"PeriodicalIF":4.9000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10962190/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Preassigned-time (PASST) control of memrisitive neural networks has been a hot research point recently. Different from the finite-time control with stable time dependent on the initial condition of the system, this brief studies the PASST control, and the stable time of which is uncorrelated with the initial condition and can be set in advance. For a class of chaotic memristive neural networks with time delays, a sliding-mode based approach is designed to realize the PASST stability. Different from the finite-time stability, the upper bound of stable time is not related to or constricted by the initial condition, and it can be arbitrarily defined for practical requirement. Moreover, as the special cases, the exponential stability and fixed-time stability are also presented via the same framework of the sliding-mode based approach. Finally, a chaotic numerical example with several comparative cases are given to verify the validity of the control method of PASST stability results.
期刊介绍:
TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes:
Circuits: Analog, Digital and Mixed Signal Circuits and Systems
Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic
Circuits and Systems, Power Electronics and Systems
Software for Analog-and-Logic Circuits and Systems
Control aspects of Circuits and Systems.