A 16-Channel Neurostimulation IC With Self-Biased Monopolar Stimulus Drivers and a Multiple-Output Charge-Pump Converter Achieving 25.44-mW/mm2 Power Density in Low-Voltage CMOS
IF 5.2 1区 工程技术Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
{"title":"A 16-Channel Neurostimulation IC With Self-Biased Monopolar Stimulus Drivers and a Multiple-Output Charge-Pump Converter Achieving 25.44-mW/mm2 Power Density in Low-Voltage CMOS","authors":"Pengfei Han;Yi Ding;Dingfu He;Xinqin Guo;Shiyv Wu;Hongming Lyu","doi":"10.1109/TCSI.2025.3562150","DOIUrl":null,"url":null,"abstract":"Electrical neuromodulation has shown superior therapeutic outcomes compared with pharmacological interventions alone. This work introduces a 16-channel neurostimulation IC featuring transistor-stacked monopolar stimulation drivers in standard CMOS technology. With a self-adaptive biasing scheme, the stimulation driver ensures operational safety across all load conditions under the ±6-V voltage compliance and successfully addresses potential leakage issues in prior work. Each driver features 8-bit current control with <inline-formula> <tex-math>$1~\\mu $ </tex-math></inline-formula>A resolution. An on-chip charge-pump system generates ±6-V supplies using a novel multiple-output pulse-skipping modulation scheme and achieves a remarkable power density of 25.44 mW/mm<sup>2</sup> through the systematic optimization of sub-converters. The 16-channel neurostimulation IC is fabricated in a 180-nm standard CMOS technology, occupying a total pad-included area of 3 mm<sup>2</sup>. The compactness and process compatibility of the design demonstrate the potential for enabling next-generation high-channel-count neural interfaces.","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":"72 6","pages":"2556-2565"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems I: Regular Papers","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10981421/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Electrical neuromodulation has shown superior therapeutic outcomes compared with pharmacological interventions alone. This work introduces a 16-channel neurostimulation IC featuring transistor-stacked monopolar stimulation drivers in standard CMOS technology. With a self-adaptive biasing scheme, the stimulation driver ensures operational safety across all load conditions under the ±6-V voltage compliance and successfully addresses potential leakage issues in prior work. Each driver features 8-bit current control with $1~\mu $ A resolution. An on-chip charge-pump system generates ±6-V supplies using a novel multiple-output pulse-skipping modulation scheme and achieves a remarkable power density of 25.44 mW/mm2 through the systematic optimization of sub-converters. The 16-channel neurostimulation IC is fabricated in a 180-nm standard CMOS technology, occupying a total pad-included area of 3 mm2. The compactness and process compatibility of the design demonstrate the potential for enabling next-generation high-channel-count neural interfaces.
期刊介绍:
TCAS I publishes regular papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: - Circuits: Analog, Digital and Mixed Signal Circuits and Systems - Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic - Circuits and Systems, Power Electronics and Systems - Software for Analog-and-Logic Circuits and Systems - Control aspects of Circuits and Systems.