{"title":"Active Antennas Beyond the Standard Impedance Matching Technique: Concepts and Applications","authors":"Constant M. A. Niamien","doi":"10.1109/OJAP.2025.3550271","DOIUrl":null,"url":null,"abstract":"This paper presents a new design concept for improving active antennas’ performances beyond the standard impedance matching technique. The proposed approach expands the mismatch at the antenna-amplifier interface to create a voltage excess, transferred to the matched output receiver using a voltage-type amplifier instead of a power type. Compared with a standard dual-input-output matching, this leads to comparable bandwidth and DC consumption but significantly improves the peak gain, gain-bandwidth-product (GBWP), stability, and noise figure. Experiments with a conventional dipole antenna confirm an improvement factor near two on gain and GBWP. Stability improves by 10°, tending to reach the reference value of 60° phase margin for sound systems. Also, the noise figure significantly decreases by 4.5 dB on average. In addition, the newly introduced performance metric, typically normalized gain-bandwidth-product (NGBWP), dividing GBWP by the average amplifying stage’s gain and the passive antenna’s GBWP, is NGBWP <inline-formula> <tex-math>${=}6.84$ </tex-math></inline-formula>, far higher than the existing works peaking at 2. Finally, the proposed active dipole shows GBWP <inline-formula> <tex-math>${=}2.68$ </tex-math></inline-formula>, which is 15 times the passive dipole. These attractive characteristics make the present approach suitable for most wireless systems.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 3","pages":"821-836"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10922756","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Antennas and Propagation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10922756/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a new design concept for improving active antennas’ performances beyond the standard impedance matching technique. The proposed approach expands the mismatch at the antenna-amplifier interface to create a voltage excess, transferred to the matched output receiver using a voltage-type amplifier instead of a power type. Compared with a standard dual-input-output matching, this leads to comparable bandwidth and DC consumption but significantly improves the peak gain, gain-bandwidth-product (GBWP), stability, and noise figure. Experiments with a conventional dipole antenna confirm an improvement factor near two on gain and GBWP. Stability improves by 10°, tending to reach the reference value of 60° phase margin for sound systems. Also, the noise figure significantly decreases by 4.5 dB on average. In addition, the newly introduced performance metric, typically normalized gain-bandwidth-product (NGBWP), dividing GBWP by the average amplifying stage’s gain and the passive antenna’s GBWP, is NGBWP ${=}6.84$ , far higher than the existing works peaking at 2. Finally, the proposed active dipole shows GBWP ${=}2.68$ , which is 15 times the passive dipole. These attractive characteristics make the present approach suitable for most wireless systems.