Hybrid Integration of a Beam-Steering Leaky-Wave Antenna and Power Amplifier MMIC Using UPD Printing in 220 to 325 GHz Range

IF 3.5 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Georg Gramlich;Elizabeth Bekker;Luca Valenziano;Joel Dittmer;Martin Roemhild;Holger Baur;Fabian Thome;Axel Tessmann;Michael Kuri;Tom Neerfeld;Andreas Stöhr;Sebastian Randel;Christian Koos;Norbert Fruehauf;Thomas Zwick;Akanksha Bhutani
{"title":"Hybrid Integration of a Beam-Steering Leaky-Wave Antenna and Power Amplifier MMIC Using UPD Printing in 220 to 325 GHz Range","authors":"Georg Gramlich;Elizabeth Bekker;Luca Valenziano;Joel Dittmer;Martin Roemhild;Holger Baur;Fabian Thome;Axel Tessmann;Michael Kuri;Tom Neerfeld;Andreas Stöhr;Sebastian Randel;Christian Koos;Norbert Fruehauf;Thomas Zwick;Akanksha Bhutani","doi":"10.1109/OJAP.2025.3551350","DOIUrl":null,"url":null,"abstract":"This paper presents the first hybrid-integration assembly of a power amplifier (PA) monolithic microwave integrated circuit (MMIC) and a beam-steering leaky wave antenna (LWA) using an ultra-precise deposition (UPD) printed coplanar waveguide (CPW) interconnect operating in a broad sub- THz range of 220 GHz to 325 GHz. The hybrid assembly uses an InGaAs PA with a saturated output power of up to 14.5 dBm and an InP LWA with a peak antenna gain of up to 13.5 dBi and a beam-steering range from -60° to 35°. The hybrid assembly employs a submount that compensates for the height difference of <inline-formula> <tex-math>$\\approx 300 \\mu \\mathrm{m}$ </tex-math></inline-formula> between the PA MMIC and LWA substrates. The PA MMIC and LWA are positioned at an edge-to-edge distance of just <inline-formula> <tex-math>$11 \\mu \\mathrm{m}$ </tex-math></inline-formula> on the submount using a die bonder with sub-micrometer accuracy. The small gap between the PA MMIC and LWA is filled with a polymer that provides a stable dielectric constant in the target sub-THz range. The UPD-printed CPW interconnect is optimized to maintain a characteristic impedance of <inline-formula> <tex-math>$50 \\Omega$ </tex-math></inline-formula> by analyzing the dielectric properties and thickness of the various materials on which the printing is performed. Moreover, the surface topology is measured using a white light interferometer, to enable fully conformal printing. The electromagnetic simulation results of the CPW interconnect show an insertion loss of 1.1 dB to 1.7 dB, which includes the RF pads of the PA MMIC, LWA, and the short segments of CPW designed on the PA MMIC and LWA substrates. A separate UPD-printed CPW test assembly is manufactured on a single polymer substrate, and custom through-reflect-line calibration standards are printed on the same substrate to experimentally validate the insertion loss of a UPD-printed CPW in the 220 GHz to 325 GHz range. A probe-based measurement setup is used to characterize the hybrid assembly. The hybrid assembly achieves a reflection coefficient of less than -10 dB and a peak gain of up to 26 dBi across the sub- THz range. The beamsteering functionality of the hybrid assembly is successfully validated only in the forward quadrant due to measurement restrictions in the backward quadrant. In the forward quadrant, the measured beam-steering angle of the hybrid assembly varies from 0° to 37°, which is in good agreement with the standalone LWA.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 3","pages":"837-853"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10926903","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Antennas and Propagation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10926903/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the first hybrid-integration assembly of a power amplifier (PA) monolithic microwave integrated circuit (MMIC) and a beam-steering leaky wave antenna (LWA) using an ultra-precise deposition (UPD) printed coplanar waveguide (CPW) interconnect operating in a broad sub- THz range of 220 GHz to 325 GHz. The hybrid assembly uses an InGaAs PA with a saturated output power of up to 14.5 dBm and an InP LWA with a peak antenna gain of up to 13.5 dBi and a beam-steering range from -60° to 35°. The hybrid assembly employs a submount that compensates for the height difference of $\approx 300 \mu \mathrm{m}$ between the PA MMIC and LWA substrates. The PA MMIC and LWA are positioned at an edge-to-edge distance of just $11 \mu \mathrm{m}$ on the submount using a die bonder with sub-micrometer accuracy. The small gap between the PA MMIC and LWA is filled with a polymer that provides a stable dielectric constant in the target sub-THz range. The UPD-printed CPW interconnect is optimized to maintain a characteristic impedance of $50 \Omega$ by analyzing the dielectric properties and thickness of the various materials on which the printing is performed. Moreover, the surface topology is measured using a white light interferometer, to enable fully conformal printing. The electromagnetic simulation results of the CPW interconnect show an insertion loss of 1.1 dB to 1.7 dB, which includes the RF pads of the PA MMIC, LWA, and the short segments of CPW designed on the PA MMIC and LWA substrates. A separate UPD-printed CPW test assembly is manufactured on a single polymer substrate, and custom through-reflect-line calibration standards are printed on the same substrate to experimentally validate the insertion loss of a UPD-printed CPW in the 220 GHz to 325 GHz range. A probe-based measurement setup is used to characterize the hybrid assembly. The hybrid assembly achieves a reflection coefficient of less than -10 dB and a peak gain of up to 26 dBi across the sub- THz range. The beamsteering functionality of the hybrid assembly is successfully validated only in the forward quadrant due to measurement restrictions in the backward quadrant. In the forward quadrant, the measured beam-steering angle of the hybrid assembly varies from 0° to 37°, which is in good agreement with the standalone LWA.
在220至325 GHz范围内采用UPD打印技术的波束导向漏波天线和功率放大器MMIC混合集成
本文介绍了功率放大器(PA)单片微波集成电路(MMIC)和波束导向漏波天线(LWA)的第一个混合集成组件,该组件使用超精密沉积(UPD)印刷共面波导(CPW)互连,工作在220 GHz至325 GHz的亚太赫兹范围内。混合组件采用饱和输出功率高达14.5 dBm的InGaAs放大器和峰值天线增益高达13.5 dBi的InP LWA,波束转向范围为-60°至35°。混合组件采用了补偿PA MMIC和LWA基板之间$\approx 300 \mu \mathrm{m}$高度差的座架。PA MMIC和LWA的边缘到边缘距离仅为$11 \mu \mathrm{m}$,使用亚微米精度的模具粘合机。PA MMIC和LWA之间的小间隙由聚合物填充,该聚合物在目标亚太赫兹范围内提供稳定的介电常数。通过分析进行打印的各种材料的介电特性和厚度,对upd打印的CPW互连进行了优化,以保持$50 \Omega$的特征阻抗。此外,使用白光干涉仪测量表面拓扑结构,以实现完全保形印刷。电磁仿真结果表明,CPW互连的插入损耗为1.1 ~ 1.7 dB,其中包括PA MMIC、LWA的射频垫,以及在PA MMIC和LWA基板上设计的CPW短段。在单个聚合物基板上制造单独的upd打印CPW测试组件,并在同一基板上打印定制的通反射线校准标准,以实验验证upd打印CPW在220 GHz至325 GHz范围内的插入损耗。采用基于探头的测量装置对混合装配进行了表征。混合组件在亚太赫兹范围内实现了小于-10 dB的反射系数和高达26 dBi的峰值增益。由于后象限的测量限制,混合动力组件的波束导向功能仅在前象限成功验证。在前象限,混合动力组件的测量波束转向角在0°到37°之间变化,与独立LWA的测量结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
12.50%
发文量
90
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信