Design and Field-Programmable Gate Array Realization of a Multirate Multisampling Algorithm for Improving Signal-to-Noise Ratio in Pulse Compression Radars

Alaa G. Zahra;Ahmed Youssef;Peter F. Driessen
{"title":"Design and Field-Programmable Gate Array Realization of a Multirate Multisampling Algorithm for Improving Signal-to-Noise Ratio in Pulse Compression Radars","authors":"Alaa G. Zahra;Ahmed Youssef;Peter F. Driessen","doi":"10.1109/TRS.2025.3564861","DOIUrl":null,"url":null,"abstract":"Due to the ongoing advancements in small unmanned systems (SUSs), the field of study on detecting targets with small radar cross section (RCS) areas is constantly expanding. Due to their widespread use in both military and civilian fields, drones are considered the most significant class of small unmanned devices, garnering significant attention. As a result, numerous methods have been developed to improve radar detection performance by mainly increasing its processing gain (PG) in order to keep up with the advancement of drone capabilities. In this article, we introduce a multirate algorithm for improving the PG of the pulsed radar to enhance its detection performance of small RCS targets. The proposed method depends on acquiring multiple samples per subpulse from the received phase-coded signal and two coherent pulse intervals (CPIs) for decision-making. The simulation results are represented to show the provided PG to the system. Moreover, the field-programmable gate array (FPGA) implementation results and the utilized resources of the suggested algorithm are shown to demonstrate the superiority of our technique compared to other conventional methods.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"3 ","pages":"756-767"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10978859/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the ongoing advancements in small unmanned systems (SUSs), the field of study on detecting targets with small radar cross section (RCS) areas is constantly expanding. Due to their widespread use in both military and civilian fields, drones are considered the most significant class of small unmanned devices, garnering significant attention. As a result, numerous methods have been developed to improve radar detection performance by mainly increasing its processing gain (PG) in order to keep up with the advancement of drone capabilities. In this article, we introduce a multirate algorithm for improving the PG of the pulsed radar to enhance its detection performance of small RCS targets. The proposed method depends on acquiring multiple samples per subpulse from the received phase-coded signal and two coherent pulse intervals (CPIs) for decision-making. The simulation results are represented to show the provided PG to the system. Moreover, the field-programmable gate array (FPGA) implementation results and the utilized resources of the suggested algorithm are shown to demonstrate the superiority of our technique compared to other conventional methods.
一种提高脉冲压缩雷达信噪比的多速率多采样算法的设计与现场可编程门阵列实现
随着小型无人系统(SUSs)的不断发展,小雷达截面(RCS)区域目标探测的研究领域不断扩大。无人机广泛应用于军事和民用领域,被认为是小型无人设备中最重要的一类,备受关注。因此,为了跟上无人机能力的进步,人们开发了许多方法来提高雷达探测性能,主要是提高其处理增益(PG)。为了提高脉冲雷达对RCS小目标的探测性能,提出了一种改进脉冲雷达PG的多速率算法。该方法依赖于从接收的相位编码信号中获取每个子脉冲的多个采样点和两个相干脉冲间隔(cpi)来进行决策。最后给出了仿真结果,向系统展示了所提供的PG。此外,现场可编程门阵列(FPGA)的实现结果和所利用的资源表明,与其他传统方法相比,我们的技术具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信