A Wideband 4×4 Patch Array Antenna With Low Sidelobes for Radar-Based Obstacle Detection in Railway Transportation

IF 3.5 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Thipamas Phakaew;Tiwat Pongthavornkamol;Danai Torrungrueng;Thomas Dallmann;Suramate Chalermwisutkul
{"title":"A Wideband 4×4 Patch Array Antenna With Low Sidelobes for Radar-Based Obstacle Detection in Railway Transportation","authors":"Thipamas Phakaew;Tiwat Pongthavornkamol;Danai Torrungrueng;Thomas Dallmann;Suramate Chalermwisutkul","doi":"10.1109/OJAP.2025.3548112","DOIUrl":null,"url":null,"abstract":"This paper presents the design, fabrication, and measurement of a <inline-formula> <tex-math>$4\\times 4$ </tex-math></inline-formula> patch array antenna for radar-based obstacle detection systems in railway transportation. Sidelobe suppression is achieved through amplitude tapering of sub-array elements in the E-plane and asymmetric power dividers in the feed network for the H-plane. The array antenna is framed by a coplanar ground conductor to further reduce sidelobes and fed by a coplanar waveguide port for enhanced impedance bandwidth. The proposed antenna offers an impedance bandwidth from 9.13 GHz to 9.76 GHz (6.3%) and a broadside gain of 18.15 dBi at the center frequency of 9.55 GHz. Sidelobe suppression exceeds 12.22 dB and 19.06 dB in the E- and H-plane, respectively. The 3-dB beamwidth is 17° in the E-plane and 16° in the H-plane with simulated radiation efficiency of 85%. A prototype was fabricated and measured, with sensitivity analysis conducted to assess performance variations due to fabrication tolerances and measurement fixture effects. To validate system performance, antenna prototypes were integrated into a frequency-modulated continuous wave radar system and tested in a realistic railway environment. The system successfully detected a truck crossing a railway track at approximately 1,260 meters, confirming the antenna’s suitability for radar-based obstacle detection in railway transportation.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 3","pages":"774-788"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10912488","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Antennas and Propagation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10912488/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the design, fabrication, and measurement of a $4\times 4$ patch array antenna for radar-based obstacle detection systems in railway transportation. Sidelobe suppression is achieved through amplitude tapering of sub-array elements in the E-plane and asymmetric power dividers in the feed network for the H-plane. The array antenna is framed by a coplanar ground conductor to further reduce sidelobes and fed by a coplanar waveguide port for enhanced impedance bandwidth. The proposed antenna offers an impedance bandwidth from 9.13 GHz to 9.76 GHz (6.3%) and a broadside gain of 18.15 dBi at the center frequency of 9.55 GHz. Sidelobe suppression exceeds 12.22 dB and 19.06 dB in the E- and H-plane, respectively. The 3-dB beamwidth is 17° in the E-plane and 16° in the H-plane with simulated radiation efficiency of 85%. A prototype was fabricated and measured, with sensitivity analysis conducted to assess performance variations due to fabrication tolerances and measurement fixture effects. To validate system performance, antenna prototypes were integrated into a frequency-modulated continuous wave radar system and tested in a realistic railway environment. The system successfully detected a truck crossing a railway track at approximately 1,260 meters, confirming the antenna’s suitability for radar-based obstacle detection in railway transportation.
用于铁路交通雷达障碍物检测的宽带4×4低旁瓣贴片阵列天线
本文介绍了一种用于铁路运输雷达障碍物检测系统的$4\ × 4$贴片阵列天线的设计、制造和测量。旁瓣抑制是通过e面子阵列元件的幅度变细和h面馈电网络中的非对称功率分配器来实现的。阵列天线由共面接地导体构成以进一步减少副瓣,并由共面波导端口馈电以增强阻抗带宽。该天线的阻抗带宽为9.13 GHz至9.76 GHz(6.3%),中心频率为9.55 GHz时的宽侧增益为18.15 dBi。E面和h面旁瓣抑制分别超过12.22 dB和19.06 dB。3db波束宽度在e面为17°,h面为16°,模拟辐射效率为85%。制造和测量了一个原型,并进行了灵敏度分析,以评估由于制造公差和测量夹具影响而导致的性能变化。为了验证系统性能,天线原型被集成到调频连续波雷达系统中,并在真实的铁路环境中进行了测试。该系统成功检测到一辆卡车在大约1260米的地方穿过铁路轨道,证实了该天线在铁路运输中基于雷达的障碍物检测的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
12.50%
发文量
90
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信