Virtual-Synchronizer-Based Current Sharing Scheme in m-Phase Resonant DC-DC Converters System

IF 4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Kangli Liu;Tianao Xiao;Peng Chen;Wenzhe Chen;Jianfeng Zhao
{"title":"Virtual-Synchronizer-Based Current Sharing Scheme in m-Phase Resonant DC-DC Converters System","authors":"Kangli Liu;Tianao Xiao;Peng Chen;Wenzhe Chen;Jianfeng Zhao","doi":"10.1109/TCSII.2025.3559142","DOIUrl":null,"url":null,"abstract":"The m-phase LLC resonant converter serves as an effective solution for reducing current stress and enabling high-power DC-DC conversion applications. However, variations in component parameters within the resonant tanks can lead to discrepancies in voltage gain, causing imbalanced output currents and thereby compromising the safe and reliable operation of the system. This brief delves into the underlying mechanism of current imbalance and elucidates the dynamic process through state-plane trajectory analysis. Consequently, a virtual-synchronizer based online current sharing scheme is proposed for m-phase resonant converters, which facilitates rapid online current balancing and ensures excellent synchronization performance. Moreover, it eliminates the need to designate a master phase, thereby enhancing the control flexibility, and the addition or removal of any phase does not disrupt the control process. The proposed method achieves synchronization and current sharing by constructing a virtual phase, without requiring additional hardware such as circuits and sensors. Results validate the effectiveness of the proposed method.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"72 6","pages":"853-857"},"PeriodicalIF":4.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10960370/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The m-phase LLC resonant converter serves as an effective solution for reducing current stress and enabling high-power DC-DC conversion applications. However, variations in component parameters within the resonant tanks can lead to discrepancies in voltage gain, causing imbalanced output currents and thereby compromising the safe and reliable operation of the system. This brief delves into the underlying mechanism of current imbalance and elucidates the dynamic process through state-plane trajectory analysis. Consequently, a virtual-synchronizer based online current sharing scheme is proposed for m-phase resonant converters, which facilitates rapid online current balancing and ensures excellent synchronization performance. Moreover, it eliminates the need to designate a master phase, thereby enhancing the control flexibility, and the addition or removal of any phase does not disrupt the control process. The proposed method achieves synchronization and current sharing by constructing a virtual phase, without requiring additional hardware such as circuits and sensors. Results validate the effectiveness of the proposed method.
基于虚拟同步器的m相谐振DC-DC变换器系统电流共享方案
m相LLC谐振变换器是降低电流应力和实现高功率DC-DC转换应用的有效解决方案。然而,谐振槽内元件参数的变化会导致电压增益的差异,导致输出电流不平衡,从而影响系统的安全可靠运行。本文探讨了电流失衡的潜在机制,并通过状态-平面轨迹分析阐明了电流失衡的动态过程。为此,提出了一种基于虚拟同步器的m相谐振变换器在线电流共享方案,实现了快速在线电流平衡,保证了良好的同步性能。此外,它消除了指定主阶段的需要,从而增强了控制的灵活性,并且添加或删除任何阶段都不会破坏控制过程。该方法通过构造虚拟相位来实现同步和电流共享,而不需要额外的硬件如电路和传感器。结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Circuits and Systems II: Express Briefs
IEEE Transactions on Circuits and Systems II: Express Briefs 工程技术-工程:电子与电气
CiteScore
7.90
自引率
20.50%
发文量
883
审稿时长
3.0 months
期刊介绍: TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: Circuits: Analog, Digital and Mixed Signal Circuits and Systems Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic Circuits and Systems, Power Electronics and Systems Software for Analog-and-Logic Circuits and Systems Control aspects of Circuits and Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信