A comparative evaluation of machine learning approaches for container freight rates prediction

IF 3.3 Q2 TRANSPORTATION
Namhun Kim , Junhee Cha , Junwoo Jeon
{"title":"A comparative evaluation of machine learning approaches for container freight rates prediction","authors":"Namhun Kim ,&nbsp;Junhee Cha ,&nbsp;Junwoo Jeon","doi":"10.1016/j.ajsl.2025.05.001","DOIUrl":null,"url":null,"abstract":"<div><div>This study evaluates the predictive performance of four models—Decision Tree, Random Forest, Prophet, and LSTM—in forecasting container freight rates, a key metric for strategic decision-making in the shipping industry. To address data heterogeneity, Min-Max normalization was applied, and the Johansen co-integration test confirmed long-term relationships among the variables, justifying the use of raw data in our analysis. Performance was assessed using MSE, RMSE, NMSE, MAE, MAPE and SMAPE. While both Decision Tree and Random Forest models yielded lower absolute errors compared to LSTM and Prophet, the Decision Tree model demonstrated superior relative accuracy, outperforming Random Forest by approximately 91.8 % on the USWC route, 52.1 % on USEC, 43.5 % on MED, and 22.7 % on NEUR. These findings highlight the robustness of the Decision Tree model for container freight rate forecasting under volatile market conditions.</div></div>","PeriodicalId":46505,"journal":{"name":"Asian Journal of Shipping and Logistics","volume":"41 2","pages":"Pages 99-109"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Shipping and Logistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209252122500015X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluates the predictive performance of four models—Decision Tree, Random Forest, Prophet, and LSTM—in forecasting container freight rates, a key metric for strategic decision-making in the shipping industry. To address data heterogeneity, Min-Max normalization was applied, and the Johansen co-integration test confirmed long-term relationships among the variables, justifying the use of raw data in our analysis. Performance was assessed using MSE, RMSE, NMSE, MAE, MAPE and SMAPE. While both Decision Tree and Random Forest models yielded lower absolute errors compared to LSTM and Prophet, the Decision Tree model demonstrated superior relative accuracy, outperforming Random Forest by approximately 91.8 % on the USWC route, 52.1 % on USEC, 43.5 % on MED, and 22.7 % on NEUR. These findings highlight the robustness of the Decision Tree model for container freight rate forecasting under volatile market conditions.
集装箱运价预测机器学习方法的比较评价
本研究评估了四种模型(决策树、随机森林、先知和lstm)在预测集装箱运价(航运业战略决策的关键指标)方面的预测性能。为了解决数据的异质性,我们应用了最小-最大归一化,并通过约翰森协整检验证实了变量之间的长期关系,证明了在我们的分析中使用原始数据是合理的。使用MSE、RMSE、NMSE、MAE、MAPE和SMAPE对性能进行评估。虽然决策树和随机森林模型的绝对误差都低于LSTM和Prophet,但决策树模型表现出更高的相对准确性,在USWC路线上优于随机森林约91.8 %,在USEC路线上优于52.1 %,在MED路线上优于43.5 %,在NEUR路线上优于22.7 %。这些发现突出了决策树模型在波动市场条件下集装箱运价预测的稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
6.50%
发文量
23
审稿时长
92 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信