{"title":"Subsurface utility detection and augmented reality visualization using GPR and deep learning","authors":"Mahmoud Hamdy Safaan , Mahmoud Metawie , Mohamed Marzouk","doi":"10.1016/j.autcon.2025.106299","DOIUrl":null,"url":null,"abstract":"<div><div>Recent urban revitalisation requires advanced utility management and innovative technology to achieve high-precision utility management. This paper introduces an automated framework that surpasses traditional methods of subsurface utility detection by integrating Ground Penetrating Radar (GPR), deep learning, and Augmented Reality (AR) to provide an advanced solution for subsurface detection and visualization. GPR data is collected using a multisensory GPR device, which employs antennas operating at different frequency ranges to achieve high-resolution imaging and deep penetration. Subsequently, a Mask R-CNN deep learning model is trained using a custom dataset, integrating transfer learning and data augmentation to improve detection reliability. The results are refined through profile alignment and Non-Maximum Suppression to increase accuracy. Finally, the detected utilities are visualized through a developed AR application incorporating spatial mapping and anchoring for precise model alignment and tracking. The developed system demonstrates promising results, providing an efficient utility detection and visualization solution.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"176 ","pages":"Article 106299"},"PeriodicalIF":9.6000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580525003395","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent urban revitalisation requires advanced utility management and innovative technology to achieve high-precision utility management. This paper introduces an automated framework that surpasses traditional methods of subsurface utility detection by integrating Ground Penetrating Radar (GPR), deep learning, and Augmented Reality (AR) to provide an advanced solution for subsurface detection and visualization. GPR data is collected using a multisensory GPR device, which employs antennas operating at different frequency ranges to achieve high-resolution imaging and deep penetration. Subsequently, a Mask R-CNN deep learning model is trained using a custom dataset, integrating transfer learning and data augmentation to improve detection reliability. The results are refined through profile alignment and Non-Maximum Suppression to increase accuracy. Finally, the detected utilities are visualized through a developed AR application incorporating spatial mapping and anchoring for precise model alignment and tracking. The developed system demonstrates promising results, providing an efficient utility detection and visualization solution.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.