Full conformal oscillator representations of odd orthogonal Lie algebras and combinatorial identities

IF 0.8 2区 数学 Q2 MATHEMATICS
Zhenyu Zhou , Xiaoping Xu
{"title":"Full conformal oscillator representations of odd orthogonal Lie algebras and combinatorial identities","authors":"Zhenyu Zhou ,&nbsp;Xiaoping Xu","doi":"10.1016/j.jalgebra.2025.04.048","DOIUrl":null,"url":null,"abstract":"<div><div>Zhao and the second author (2013) constructed a functor from <span><math><mi>o</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span>-<strong>Mod</strong> to <span><math><mi>o</mi><mo>(</mo><mi>k</mi><mo>+</mo><mn>2</mn><mo>)</mo></math></span>-<strong>Mod</strong>. In this paper, we use the functor successively to obtain an inhomogeneous first-order differential operator realization for any highest-weight representation of <span><math><mi>o</mi><mo>(</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>3</mn><mo>)</mo></math></span> in <span><math><msup><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> variables. When the highest weight is dominant integral, we find a span set for the corresponding finite-dimensional irreducible module. One can use the result to study tensor decomposition of finite-dimensional irreducible modules by solving certain first-order linear partial differential equations, and thereby obtain the corresponding physically interested Clebsch-Gordan coefficients and exact solutions of Knizhnik-Zamolodchikov equation in WZW model of conformal field theory. We also find an equation of counting the dimension of an irreducible <span><math><mi>o</mi><mo>(</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>3</mn><mo>)</mo></math></span>-module in terms of certain alternating sum of the dimensions of irreducible <span><math><mi>o</mi><mo>(</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-modules. In the case of the Steinberg modules, we obtain new combinatorial identities of classical type.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"681 ","pages":"Pages 62-106"},"PeriodicalIF":0.8000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325002856","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Zhao and the second author (2013) constructed a functor from o(k)-Mod to o(k+2)-Mod. In this paper, we use the functor successively to obtain an inhomogeneous first-order differential operator realization for any highest-weight representation of o(2n+3) in (n+1)2 variables. When the highest weight is dominant integral, we find a span set for the corresponding finite-dimensional irreducible module. One can use the result to study tensor decomposition of finite-dimensional irreducible modules by solving certain first-order linear partial differential equations, and thereby obtain the corresponding physically interested Clebsch-Gordan coefficients and exact solutions of Knizhnik-Zamolodchikov equation in WZW model of conformal field theory. We also find an equation of counting the dimension of an irreducible o(2n+3)-module in terms of certain alternating sum of the dimensions of irreducible o(2n+1)-modules. In the case of the Steinberg modules, we obtain new combinatorial identities of classical type.
奇正交李代数的全共形振子表示与组合恒等式
Zhao和第二作者(2013)构造了一个从o(k)-Mod到o(k+2)-Mod的函子。本文利用函子相继得到了(n+1)2个变量中0 (2n+3)的任意最高权表示的非齐次一阶微分算子实现。当最大权值为优势积分时,我们找到了相应有限维不可约模的张成集。利用这一结果可以通过求解一阶线性偏微分方程来研究有限维不可约模的张量分解,从而得到共形场论WZW模型中相应的物理感兴趣的Clebsch-Gordan系数和Knizhnik-Zamolodchikov方程的精确解。我们还得到了用不可约0 (2n+1)模的维数交替和来计算不可约0 (2n+3)模的维数的一个方程。对于Steinberg模,我们得到了新的经典型组合恒等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信