Xuan-Jia Li , Xiao-Qing Peng , Oliver W. Frauenfeld , Guang-Shang Yang , Wei-Wei Tian , Yuan Huang , Gang Wei , Guan-Qun Chen , Cui-Cui Mu , Hao Sun
{"title":"Uncertainties in global permafrost area extent estimates from different methods","authors":"Xuan-Jia Li , Xiao-Qing Peng , Oliver W. Frauenfeld , Guang-Shang Yang , Wei-Wei Tian , Yuan Huang , Gang Wei , Guan-Qun Chen , Cui-Cui Mu , Hao Sun","doi":"10.1016/j.accre.2025.03.008","DOIUrl":null,"url":null,"abstract":"<div><div>Previous permafrost extent estimates applied one or two methods to calculate the permafrost area, and the uncertainties between the methods were not assessed. Here, we apply seven methods to estimate and project global permafrost area extent and discuss the uncertainties of each approach. These methods are forced with output from CMIP6 and ERA5-Land, and we quantify the seven methods’ differences and uncertainties. During the historical period (1981–2010), the mean global permafrost area from multiple methods is 14.1 ± 4.5 × 10<sup>6</sup> km<sup>2</sup>, with differences ranging from 2.1% to 31.2%. The variability in future permafrost area extent degradation relative to the historical period based on different methods ranges from 1.8% to 34.7%. Uncertainties in permafrost area extent estimates can reach 35% based on different methods. Under various future emission pathways (<em>e.g.</em>, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), the worst-case scenario (SSP5-8.5) projects a permafrost extent of only 1.3–8.2 × 10<sup>6</sup> km<sup>2</sup> for 2070–2099, corresponding to area decreases of 51.2%–86.9%. Spatially, permafrost near the lower-latitude permafrost boundary may completely disappear by the end of the 21st century, while degradation in the circum-Arctic, Qinghai–Tibet Plateau, and Antarctica will be smaller, but still exceed 50% under the highest emission scenario (SSP5-8.5). Compared to the temperature distribution of existing permafrost maps, the temperature at top of permafrost model and the surface frost index using ground temperature adjusted for snow methods perform best. However, compared to <em>in-situ</em> boreholes, two generalized linear model approaches have the best overall accuracy. These uncertainties using different methods are important to recognize in assessments of the future state of permafrost degradation.</div></div>","PeriodicalId":48628,"journal":{"name":"Advances in Climate Change Research","volume":"16 2","pages":"Pages 312-323"},"PeriodicalIF":6.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Climate Change Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674927825000693","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Previous permafrost extent estimates applied one or two methods to calculate the permafrost area, and the uncertainties between the methods were not assessed. Here, we apply seven methods to estimate and project global permafrost area extent and discuss the uncertainties of each approach. These methods are forced with output from CMIP6 and ERA5-Land, and we quantify the seven methods’ differences and uncertainties. During the historical period (1981–2010), the mean global permafrost area from multiple methods is 14.1 ± 4.5 × 106 km2, with differences ranging from 2.1% to 31.2%. The variability in future permafrost area extent degradation relative to the historical period based on different methods ranges from 1.8% to 34.7%. Uncertainties in permafrost area extent estimates can reach 35% based on different methods. Under various future emission pathways (e.g., SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), the worst-case scenario (SSP5-8.5) projects a permafrost extent of only 1.3–8.2 × 106 km2 for 2070–2099, corresponding to area decreases of 51.2%–86.9%. Spatially, permafrost near the lower-latitude permafrost boundary may completely disappear by the end of the 21st century, while degradation in the circum-Arctic, Qinghai–Tibet Plateau, and Antarctica will be smaller, but still exceed 50% under the highest emission scenario (SSP5-8.5). Compared to the temperature distribution of existing permafrost maps, the temperature at top of permafrost model and the surface frost index using ground temperature adjusted for snow methods perform best. However, compared to in-situ boreholes, two generalized linear model approaches have the best overall accuracy. These uncertainties using different methods are important to recognize in assessments of the future state of permafrost degradation.
期刊介绍:
Advances in Climate Change Research publishes scientific research and analyses on climate change and the interactions of climate change with society. This journal encompasses basic science and economic, social, and policy research, including studies on mitigation and adaptation to climate change.
Advances in Climate Change Research attempts to promote research in climate change and provide an impetus for the application of research achievements in numerous aspects, such as socioeconomic sustainable development, responses to the adaptation and mitigation of climate change, diplomatic negotiations of climate and environment policies, and the protection and exploitation of natural resources.