{"title":"Gradient-free score-based sampling methods with ensembles","authors":"Bryan Riel , Tobias Bischoff","doi":"10.1016/j.apm.2025.116224","DOIUrl":null,"url":null,"abstract":"<div><div>Recent developments in generative modeling have utilized score-based methods coupled with stochastic differential equations to sample from complex probability distributions. However, these and other performant sampling methods generally require gradients of the target probability distribution, which can be unavailable or computationally prohibitive in many scientific and engineering applications. Here, we introduce ensembles within score-based sampling methods to develop gradient-free approximate sampling techniques that leverage the collective dynamics of particle ensembles to compute approximate reverse diffusion drifts. We introduce the underlying methodology, emphasizing its relationship with generative diffusion models and the previously introduced Föllmer sampler. We demonstrate the efficacy of the ensemble strategies through various examples, ranging from low- to medium-dimensionality sampling problems, including multi-modal and highly non-Gaussian probability distributions, and provide comparisons to traditional methods like the No-U-Turn Sampler. Additionally, we showcase these strategies in the context of a high-dimensional Bayesian inversion problem within the geophysical sciences. Our findings highlight the potential of ensemble strategies for modeling complex probability distributions in situations where gradients are unavailable.</div></div>","PeriodicalId":50980,"journal":{"name":"Applied Mathematical Modelling","volume":"147 ","pages":"Article 116224"},"PeriodicalIF":4.4000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Modelling","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0307904X25002999","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent developments in generative modeling have utilized score-based methods coupled with stochastic differential equations to sample from complex probability distributions. However, these and other performant sampling methods generally require gradients of the target probability distribution, which can be unavailable or computationally prohibitive in many scientific and engineering applications. Here, we introduce ensembles within score-based sampling methods to develop gradient-free approximate sampling techniques that leverage the collective dynamics of particle ensembles to compute approximate reverse diffusion drifts. We introduce the underlying methodology, emphasizing its relationship with generative diffusion models and the previously introduced Föllmer sampler. We demonstrate the efficacy of the ensemble strategies through various examples, ranging from low- to medium-dimensionality sampling problems, including multi-modal and highly non-Gaussian probability distributions, and provide comparisons to traditional methods like the No-U-Turn Sampler. Additionally, we showcase these strategies in the context of a high-dimensional Bayesian inversion problem within the geophysical sciences. Our findings highlight the potential of ensemble strategies for modeling complex probability distributions in situations where gradients are unavailable.
期刊介绍:
Applied Mathematical Modelling focuses on research related to the mathematical modelling of engineering and environmental processes, manufacturing, and industrial systems. A significant emerging area of research activity involves multiphysics processes, and contributions in this area are particularly encouraged.
This influential publication covers a wide spectrum of subjects including heat transfer, fluid mechanics, CFD, and transport phenomena; solid mechanics and mechanics of metals; electromagnets and MHD; reliability modelling and system optimization; finite volume, finite element, and boundary element procedures; modelling of inventory, industrial, manufacturing and logistics systems for viable decision making; civil engineering systems and structures; mineral and energy resources; relevant software engineering issues associated with CAD and CAE; and materials and metallurgical engineering.
Applied Mathematical Modelling is primarily interested in papers developing increased insights into real-world problems through novel mathematical modelling, novel applications or a combination of these. Papers employing existing numerical techniques must demonstrate sufficient novelty in the solution of practical problems. Papers on fuzzy logic in decision-making or purely financial mathematics are normally not considered. Research on fractional differential equations, bifurcation, and numerical methods needs to include practical examples. Population dynamics must solve realistic scenarios. Papers in the area of logistics and business modelling should demonstrate meaningful managerial insight. Submissions with no real-world application will not be considered.