Weighted inertia-dissipation-energy approach to doubly nonlinear wave equations

IF 1.7 2区 数学 Q1 MATHEMATICS
Goro Akagi , Verena Bögelein , Alice Marveggio , Ulisse Stefanelli
{"title":"Weighted inertia-dissipation-energy approach to doubly nonlinear wave equations","authors":"Goro Akagi ,&nbsp;Verena Bögelein ,&nbsp;Alice Marveggio ,&nbsp;Ulisse Stefanelli","doi":"10.1016/j.jfa.2025.111067","DOIUrl":null,"url":null,"abstract":"<div><div>We discuss a variational approach to doubly nonlinear wave equations of the form <span><math><mi>ρ</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub><mo>+</mo><mi>g</mi><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>. This approach hinges on the minimization of a parameter-dependent family of uniformly convex functionals over entire trajectories, namely the so-called Weighted Inertia-Dissipation-Energy (WIDE) functionals. We prove that the WIDE functionals admit minimizers and that the corresponding Euler-Lagrange system is solvable in the strong sense. Moreover, we check that the parameter-dependent minimizers converge, up to subsequences, to a solution of the target doubly nonlinear wave equation as the parameter goes to 0. The analysis relies on specific estimates on the WIDE minimizers, on the decomposition of the subdifferential of the WIDE functional, and on the identification of the nonlinearities in the limit. Eventually, we investigate the viscous limit <span><math><mi>ρ</mi><mo>→</mo><mn>0</mn></math></span>, both at the functional level and on that of the equation.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 8","pages":"Article 111067"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625002496","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We discuss a variational approach to doubly nonlinear wave equations of the form ρutt+g(ut)Δu+f(u)=0. This approach hinges on the minimization of a parameter-dependent family of uniformly convex functionals over entire trajectories, namely the so-called Weighted Inertia-Dissipation-Energy (WIDE) functionals. We prove that the WIDE functionals admit minimizers and that the corresponding Euler-Lagrange system is solvable in the strong sense. Moreover, we check that the parameter-dependent minimizers converge, up to subsequences, to a solution of the target doubly nonlinear wave equation as the parameter goes to 0. The analysis relies on specific estimates on the WIDE minimizers, on the decomposition of the subdifferential of the WIDE functional, and on the identification of the nonlinearities in the limit. Eventually, we investigate the viscous limit ρ0, both at the functional level and on that of the equation.
双非线性波动方程的加权惯性-耗散-能量方法
我们讨论了形式为ρutt+g(ut)−Δu+f(u)=0的双非线性波动方程的变分方法。这种方法取决于整个轨迹上的参数相关的均匀凸泛函族的最小化,即所谓的加权惯性-耗散-能量(WIDE)泛函。证明了WIDE泛函具有极小性,并证明了相应的欧拉-拉格朗日系统在强意义上是可解的。此外,我们检查参数相关的最小化收敛,直到子序列,到目标双非线性波动方程的解,当参数趋于0。分析依赖于对WIDE最小值的具体估计,对WIDE泛函的子微分的分解,以及对极限中的非线性的识别。最后,我们在泛函水平和方程的水平上研究了粘性极限ρ→0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信