{"title":"The Monge-Ampère system in dimension two: A regularity improvement","authors":"Marta Lewicka","doi":"10.1016/j.jfa.2025.111064","DOIUrl":null,"url":null,"abstract":"<div><div>We prove a convex integration result for the Monge-Ampère system introduced in <span><span>[7]</span></span>, in case of dimension <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span> and arbitrary codimension <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span>. Our prior result <span><span>[8]</span></span> stated flexibility up to the Hölder regularity <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>+</mo><mn>4</mn><mo>/</mo><mi>k</mi></mrow></mfrac></mrow></msup></math></span>, whereas presently we achieve flexibility up to <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span> when <span><math><mi>k</mi><mo>≥</mo><mn>4</mn></math></span> and up to <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mfrac><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi></mrow></msup><mo>−</mo><mn>1</mn></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup></math></span> for any <em>k</em>. This first result uses the approach closest to that of Källen <span><span>[6]</span></span> in the context of the isometric immersion problem, while the second result uses the double iteration procedure from <span><span>[7]</span></span> combined with the approach of Cao-Hirsch-Inauen <span><span>[1]</span></span>, agreeing with it for <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span> at the Hölder regularity up to <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msup></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 8","pages":"Article 111064"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625002460","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove a convex integration result for the Monge-Ampère system introduced in [7], in case of dimension and arbitrary codimension . Our prior result [8] stated flexibility up to the Hölder regularity , whereas presently we achieve flexibility up to when and up to for any k. This first result uses the approach closest to that of Källen [6] in the context of the isometric immersion problem, while the second result uses the double iteration procedure from [7] combined with the approach of Cao-Hirsch-Inauen [1], agreeing with it for at the Hölder regularity up to .
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis