{"title":"Essential semigroups and branching rules","authors":"Andrei Gornitskii","doi":"10.1016/j.jalgebra.2025.04.047","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>g</mi></math></span> be a semisimple complex Lie algebra of finite dimension and <span><math><mi>h</mi></math></span> be a semisimple subalgebra. We present an approach to find the branching rules for the pair <span><math><mi>g</mi><mo>⊃</mo><mi>h</mi></math></span>. According to an idea of Zhelobenko the information on restriction to <span><math><mi>h</mi></math></span> of all irreducible representations of <span><math><mi>g</mi></math></span> is contained in one associative algebra, which we call the <em>branching algebra</em>. We use an <em>essential semigroup</em> Σ, which parametrizes certain bases in every finite-dimensional irreducible representations of <span><math><mi>g</mi></math></span>, and describe the branching rules for <span><math><mi>g</mi><mo>⊃</mo><mi>h</mi></math></span> in terms of a certain subsemigroup <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> of Σ. If <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> is finitely generated, then the semigroup algebra corresponding to <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> is a toric degeneration of the branching algebra. We propose an algorithm to find a description of <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> in this case. We give examples by deriving the branching rules for <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>⊃</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>⊃</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊃</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>⊃</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, and <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>⊃</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"681 ","pages":"Pages 190-205"},"PeriodicalIF":0.8000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325002868","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a semisimple complex Lie algebra of finite dimension and be a semisimple subalgebra. We present an approach to find the branching rules for the pair . According to an idea of Zhelobenko the information on restriction to of all irreducible representations of is contained in one associative algebra, which we call the branching algebra. We use an essential semigroup Σ, which parametrizes certain bases in every finite-dimensional irreducible representations of , and describe the branching rules for in terms of a certain subsemigroup of Σ. If is finitely generated, then the semigroup algebra corresponding to is a toric degeneration of the branching algebra. We propose an algorithm to find a description of in this case. We give examples by deriving the branching rules for , , , , and .
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.