Essential semigroups and branching rules

IF 0.8 2区 数学 Q2 MATHEMATICS
Andrei Gornitskii
{"title":"Essential semigroups and branching rules","authors":"Andrei Gornitskii","doi":"10.1016/j.jalgebra.2025.04.047","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>g</mi></math></span> be a semisimple complex Lie algebra of finite dimension and <span><math><mi>h</mi></math></span> be a semisimple subalgebra. We present an approach to find the branching rules for the pair <span><math><mi>g</mi><mo>⊃</mo><mi>h</mi></math></span>. According to an idea of Zhelobenko the information on restriction to <span><math><mi>h</mi></math></span> of all irreducible representations of <span><math><mi>g</mi></math></span> is contained in one associative algebra, which we call the <em>branching algebra</em>. We use an <em>essential semigroup</em> Σ, which parametrizes certain bases in every finite-dimensional irreducible representations of <span><math><mi>g</mi></math></span>, and describe the branching rules for <span><math><mi>g</mi><mo>⊃</mo><mi>h</mi></math></span> in terms of a certain subsemigroup <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> of Σ. If <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> is finitely generated, then the semigroup algebra corresponding to <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> is a toric degeneration of the branching algebra. We propose an algorithm to find a description of <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> in this case. We give examples by deriving the branching rules for <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>⊃</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>⊃</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊃</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>⊃</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, and <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>⊃</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"681 ","pages":"Pages 190-205"},"PeriodicalIF":0.8000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325002868","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let g be a semisimple complex Lie algebra of finite dimension and h be a semisimple subalgebra. We present an approach to find the branching rules for the pair gh. According to an idea of Zhelobenko the information on restriction to h of all irreducible representations of g is contained in one associative algebra, which we call the branching algebra. We use an essential semigroup Σ, which parametrizes certain bases in every finite-dimensional irreducible representations of g, and describe the branching rules for gh in terms of a certain subsemigroup Σ of Σ. If Σ is finitely generated, then the semigroup algebra corresponding to Σ is a toric degeneration of the branching algebra. We propose an algorithm to find a description of Σ in this case. We give examples by deriving the branching rules for AnAn1, BnDn, G2A2, B3G2, and F4B4.
基本半群和分支规则
设g为有限维的半单复李代数,h为半单子代数。我们提出了一种寻找g、h对分支规则的方法。根据Zhelobenko的思想,g的所有不可约表示对h的限制信息包含在一个结合代数中,我们称之为分支代数。我们使用了一个本质半群Σ,它参数化了g的每一个有限维不可约表示中的某些基,并用Σ的某个子半群Σ '描述了g、h的分支规则。如果Σ ‘是有限生成的,那么对应于Σ ’的半群代数是分支代数的一个环退化。在这种情况下,我们提出了一种算法来查找Σ '的描述。我们通过推导An、An−1、Bn、Dn、G2、A2、B3、G2和F4、B4的分支规则给出了例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信