Lothar Sebastian Krapp , Salma Kuhlmann , Michele Serra
{"title":"Generalised power series determined by linear recurrence relations","authors":"Lothar Sebastian Krapp , Salma Kuhlmann , Michele Serra","doi":"10.1016/j.jalgebra.2025.05.012","DOIUrl":null,"url":null,"abstract":"<div><div>In 1882, Kronecker established that a given univariate formal Laurent series over a field can be expressed as a fraction of two univariate polynomials if and only if the coefficients of the series satisfy a linear recurrence relation. We introduce the notion of <em>generalised</em> linear recurrence relations for power series with exponents in an arbitrary ordered abelian group, and generalise Kronecker's original result. In particular, we obtain criteria for determining whether a multivariate formal Laurent series lies in the fraction field of the corresponding polynomial ring. Moreover, we study distinguished algebraic substructures of a power series field, which are determined by generalised linear recurrence relations. In particular, we identify generalised linear recurrence relations that determine power series fields satisfying additional properties which are essential for the study of their automorphism groups.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"681 ","pages":"Pages 152-189"},"PeriodicalIF":0.8000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325002960","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In 1882, Kronecker established that a given univariate formal Laurent series over a field can be expressed as a fraction of two univariate polynomials if and only if the coefficients of the series satisfy a linear recurrence relation. We introduce the notion of generalised linear recurrence relations for power series with exponents in an arbitrary ordered abelian group, and generalise Kronecker's original result. In particular, we obtain criteria for determining whether a multivariate formal Laurent series lies in the fraction field of the corresponding polynomial ring. Moreover, we study distinguished algebraic substructures of a power series field, which are determined by generalised linear recurrence relations. In particular, we identify generalised linear recurrence relations that determine power series fields satisfying additional properties which are essential for the study of their automorphism groups.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.