A risk prediction model for seizure development in patients with brain metastases

IF 2.7 3区 医学 Q2 CLINICAL NEUROLOGY
Seraj Makkawi , Shatha Alqurashi , Toka Banjar , Feras Alharbi , Ahmed Alkhiri , Manar Betar , Mohamed Eldigire Ahmed , Danya Aljafari , Aisha Halawani , Hani Mufti
{"title":"A risk prediction model for seizure development in patients with brain metastases","authors":"Seraj Makkawi ,&nbsp;Shatha Alqurashi ,&nbsp;Toka Banjar ,&nbsp;Feras Alharbi ,&nbsp;Ahmed Alkhiri ,&nbsp;Manar Betar ,&nbsp;Mohamed Eldigire Ahmed ,&nbsp;Danya Aljafari ,&nbsp;Aisha Halawani ,&nbsp;Hani Mufti","doi":"10.1016/j.seizure.2025.05.013","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Limited data exists evaluating the incidence and risk factors for seizures in patients with brain metastases (BM). This study aimed to investigate seizure incidence patterns in relation to several radiological and clinical factors and develop a predictive model to stratify patients with BM according to their seizure risk.</div></div><div><h3>Method</h3><div>A single-center retrospective analysis was conducted at King Abdulaziz Medical City, Saudi Arabia, studying patients with BM between July 2016 and January 2023. Univariate regression analysis evaluated potential risk factors, and a predictive model was developed. The model’s general performance was assessed using the Area Under the Receiver Operator Curve (AUC-ROC) and the Bayesian Information Criterion (BIC). Internal validation was done using the bootstrapping method.</div></div><div><h3>Results</h3><div>Among 272 patients, epilepsy was diagnosed in 80 (29.4 %). The score model identified cortical involvement (OR 28.08 [95 % CI, 9.22- 85.48],<em>p</em> &lt; 0.001), leptomeningeal metastases (OR 11.2 [95 % CI, 3.52–35.65],<em>p</em> &lt; 0.001), and female gender (OR 2.67 [95 % CI, 1.16–6.17],<em>p</em> = 0. 0211) as key signifcant predictors of seizure development. The model achieved an AUC-ROC of 81.89 %.</div></div><div><h3>Conclusion</h3><div>Female gender, cortical involvement, and leptomeningeal metastases were identified as significant seizure predictors in BM patients. The derived model can help identify high-risk patients potentially benefiting from prophylactic anti-seizure medications. Further validation in larger cohorts is needed.</div></div>","PeriodicalId":49552,"journal":{"name":"Seizure-European Journal of Epilepsy","volume":"130 ","pages":"Pages 86-91"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seizure-European Journal of Epilepsy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1059131125001281","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Limited data exists evaluating the incidence and risk factors for seizures in patients with brain metastases (BM). This study aimed to investigate seizure incidence patterns in relation to several radiological and clinical factors and develop a predictive model to stratify patients with BM according to their seizure risk.

Method

A single-center retrospective analysis was conducted at King Abdulaziz Medical City, Saudi Arabia, studying patients with BM between July 2016 and January 2023. Univariate regression analysis evaluated potential risk factors, and a predictive model was developed. The model’s general performance was assessed using the Area Under the Receiver Operator Curve (AUC-ROC) and the Bayesian Information Criterion (BIC). Internal validation was done using the bootstrapping method.

Results

Among 272 patients, epilepsy was diagnosed in 80 (29.4 %). The score model identified cortical involvement (OR 28.08 [95 % CI, 9.22- 85.48],p < 0.001), leptomeningeal metastases (OR 11.2 [95 % CI, 3.52–35.65],p < 0.001), and female gender (OR 2.67 [95 % CI, 1.16–6.17],p = 0. 0211) as key signifcant predictors of seizure development. The model achieved an AUC-ROC of 81.89 %.

Conclusion

Female gender, cortical involvement, and leptomeningeal metastases were identified as significant seizure predictors in BM patients. The derived model can help identify high-risk patients potentially benefiting from prophylactic anti-seizure medications. Further validation in larger cohorts is needed.
脑转移患者癫痫发作的风险预测模型
评估脑转移(BM)患者癫痫发作的发生率和危险因素的数据有限。本研究旨在探讨癫痫发作模式与几个放射学和临床因素的关系,并建立一个预测模型,根据发作风险对BM患者进行分层。方法对2016年7月至2023年1月在沙特阿拉伯阿卜杜勒阿齐兹国王医疗城就诊的BM患者进行单中心回顾性分析。单因素回归分析评估潜在危险因素,并建立预测模型。采用接收算子曲线下面积(AUC-ROC)和贝叶斯信息准则(BIC)对模型的总体性能进行评估。内部验证使用bootstrapping方法完成。结果272例患者中癫痫确诊80例(29.4%)。评分模型识别皮层受累(OR 28.08 [95% CI, 9.22- 85.48],p <;0.001),脑膜转移(OR 11.2 [95% CI, 3.52-35.65],p <;0.001),女性(OR 2.67 [95% CI, 1.16-6.17],p = 0。0211)作为癫痫发作发展的关键重要预测因子。该模型的AUC-ROC为81.89%。结论女性、皮质受累和脑脊膜轻脑膜转移是脑脊膜炎患者癫痫发作的重要预测因素。导出的模型可以帮助识别高危患者潜在受益于预防性抗癫痫药物。需要在更大的队列中进一步验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Seizure-European Journal of Epilepsy
Seizure-European Journal of Epilepsy 医学-临床神经学
CiteScore
5.60
自引率
6.70%
发文量
231
审稿时长
34 days
期刊介绍: Seizure - European Journal of Epilepsy is an international journal owned by Epilepsy Action (the largest member led epilepsy organisation in the UK). It provides a forum for papers on all topics related to epilepsy and seizure disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信