{"title":"Adaptive model-free control for ankle-assistive orthosis: A robust approach to real-time gait tracking","authors":"Oussama Bey, Yacine Amirat, Samer Mohammed","doi":"10.1016/j.mechatronics.2025.103341","DOIUrl":null,"url":null,"abstract":"<div><div>Actuated Ankle-Foot Orthoses (AAFOs) assist dorsiflexion and plantarflexion movements at the ankle joint, supporting mobility and rehabilitation by complementing the wearer’s residual muscular activity within an assist-as-needed paradigm. Their effectiveness depends on advanced control strategies and accurate modeling of the coupled human-AAFO dynamics, which remains a challenging task. This paper presents a novel assist-as-needed control approach for an AAFO/wearer system based on an adaptive model-free framework, without the need for a dynamic model of the AAFO/wearer system. The proposed approach uses an ultra-local model, wherein a intelligent projection-based adaptive PID (iA-PID) controller is designed to achieve satisfactory tracking of a reference ankle joint trajectory. External torques affecting the AAFO/wearer system are estimated using a time-delay estimator and are compensated within the iPA-PID controller to ensure assist-as-needed control. Additionally, the projection operator constrains the evolution of the adaptive parameters, preventing actuator saturation and enabling controlled assistance delivery. Finite-time stability of the resulting closed-loop system is proven, and the final value theorem ensures that the tracking error converges to zero. The performance of the proposed approach is evaluated through simulations and real-time experiments with four healthy subjects. A comparison of tracking performance with several benchmark approaches was conducted as well as robustness tests under varying walking speeds to confirm the effectiveness and reliability of the proposed control approach.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"109 ","pages":"Article 103341"},"PeriodicalIF":3.1000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415825000509","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Actuated Ankle-Foot Orthoses (AAFOs) assist dorsiflexion and plantarflexion movements at the ankle joint, supporting mobility and rehabilitation by complementing the wearer’s residual muscular activity within an assist-as-needed paradigm. Their effectiveness depends on advanced control strategies and accurate modeling of the coupled human-AAFO dynamics, which remains a challenging task. This paper presents a novel assist-as-needed control approach for an AAFO/wearer system based on an adaptive model-free framework, without the need for a dynamic model of the AAFO/wearer system. The proposed approach uses an ultra-local model, wherein a intelligent projection-based adaptive PID (iA-PID) controller is designed to achieve satisfactory tracking of a reference ankle joint trajectory. External torques affecting the AAFO/wearer system are estimated using a time-delay estimator and are compensated within the iPA-PID controller to ensure assist-as-needed control. Additionally, the projection operator constrains the evolution of the adaptive parameters, preventing actuator saturation and enabling controlled assistance delivery. Finite-time stability of the resulting closed-loop system is proven, and the final value theorem ensures that the tracking error converges to zero. The performance of the proposed approach is evaluated through simulations and real-time experiments with four healthy subjects. A comparison of tracking performance with several benchmark approaches was conducted as well as robustness tests under varying walking speeds to confirm the effectiveness and reliability of the proposed control approach.
期刊介绍:
Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.