Shanqing Qu , Yaxiong Yang , Mingxia Gao , Zhenglong Li , Wenping Sun , Chu Liang , Xin Zhang , Xiaoyu Zhang , Lingchao Zhang , Ruizi Wang , Hongge Pan
{"title":"Superior reversible hydrogen storage in eutectic LiBH4–KBH4 system via Ni–based catalysts synergized with graphene","authors":"Shanqing Qu , Yaxiong Yang , Mingxia Gao , Zhenglong Li , Wenping Sun , Chu Liang , Xin Zhang , Xiaoyu Zhang , Lingchao Zhang , Ruizi Wang , Hongge Pan","doi":"10.1016/j.mtcata.2025.100105","DOIUrl":null,"url":null,"abstract":"<div><div>Light metal borohydrides are promising candidates for solid–state hydrogen storage due to their high hydrogen storage capacities; however, the reversibility and kinetics of de/hydrogenation still require significant improvement. The present work focuses on the improvement of the hydrogen storage properties of the eutectic borohydride system of LiBH<sub>4</sub>–KBH<sub>4</sub> (Li/KBH<sub>4</sub>). A layered composite of graphene supported with ultrafine Ni<sub>3</sub>B nanoparticles (Ni<sub>3</sub>B/G) is designed and synthesized, which acts as catalyst and confinement carrier for Li/KBH<sub>4</sub>. Assisted with a heating of the mixture of Li/KBH<sub>4</sub> and Ni<sub>3</sub>B/G to 110 °C in the molten state of Li/KBH<sub>4</sub>, an interlayer structure of graphene dispersed with Ni<sub>3</sub>B nanoparticles and sheet–like Li/KBH<sub>4</sub> is constructed. The graphene effectively disperses Ni<sub>3</sub>B nanoparticles and confines the Li/KBH<sub>4</sub> in its interlayers. The confinement of Li/KBH<sub>4</sub> and the catalysis of Ni<sub>3</sub>B nanoparticles, assisted with the high thermal conductivity of graphene, contribute synergistically the hydrogen storage of Li/KBH<sub>4</sub>. The main dehydrogenation peak temperature of the system is lowered to 278 °C. The system can release 8.5 wt% H<sub>2</sub> within 30 min at 350 °C. The capacity retention achieves 81.2 % after 50 cycles. DFT theoretical analysis shows that there is strong charge transfer interaction between Ni<sub>3</sub>B and LiBH<sub>4</sub>/KBH<sub>4</sub>, which destabilizes the [BH<sub>4</sub>]<sup>–</sup> structure and promotes the dehydrogenation. This work provides a new approach for the design of new structural LiBH<sub>4</sub>–based eutectic system with high capacity, low dehydrogenation temperature, high reversibility and long cycling life.</div></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"9 ","pages":"Article 100105"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949754X25000183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Light metal borohydrides are promising candidates for solid–state hydrogen storage due to their high hydrogen storage capacities; however, the reversibility and kinetics of de/hydrogenation still require significant improvement. The present work focuses on the improvement of the hydrogen storage properties of the eutectic borohydride system of LiBH4–KBH4 (Li/KBH4). A layered composite of graphene supported with ultrafine Ni3B nanoparticles (Ni3B/G) is designed and synthesized, which acts as catalyst and confinement carrier for Li/KBH4. Assisted with a heating of the mixture of Li/KBH4 and Ni3B/G to 110 °C in the molten state of Li/KBH4, an interlayer structure of graphene dispersed with Ni3B nanoparticles and sheet–like Li/KBH4 is constructed. The graphene effectively disperses Ni3B nanoparticles and confines the Li/KBH4 in its interlayers. The confinement of Li/KBH4 and the catalysis of Ni3B nanoparticles, assisted with the high thermal conductivity of graphene, contribute synergistically the hydrogen storage of Li/KBH4. The main dehydrogenation peak temperature of the system is lowered to 278 °C. The system can release 8.5 wt% H2 within 30 min at 350 °C. The capacity retention achieves 81.2 % after 50 cycles. DFT theoretical analysis shows that there is strong charge transfer interaction between Ni3B and LiBH4/KBH4, which destabilizes the [BH4]– structure and promotes the dehydrogenation. This work provides a new approach for the design of new structural LiBH4–based eutectic system with high capacity, low dehydrogenation temperature, high reversibility and long cycling life.