Microfluidic fabrication of rivastigmine-loaded chitosan-hyaluronic acid nanoparticles using 3D-Printed devices

IF 4.5 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Esmaeil Atashbasteh , Mohsen Nasr Esfahany , Parham Reisi , Mohsen Minaiyan , Azade Taheri
{"title":"Microfluidic fabrication of rivastigmine-loaded chitosan-hyaluronic acid nanoparticles using 3D-Printed devices","authors":"Esmaeil Atashbasteh ,&nbsp;Mohsen Nasr Esfahany ,&nbsp;Parham Reisi ,&nbsp;Mohsen Minaiyan ,&nbsp;Azade Taheri","doi":"10.1016/j.jddst.2025.107084","DOIUrl":null,"url":null,"abstract":"<div><div>This research investigates the combination of 3D printing and microfluidic technologies to create innovative drug delivery systems for neurodegenerative conditions. Fused Deposition Modeling (FDM) was utilized to design and produce four different microfluidic channel configurations (Y-shaped, T-shaped, Baffle, and Staggered Herringbone Micromixers). These channels were used to prepare chitosan-hyaluronic acid polyelectrolyte nanoparticles encapsulating rivastigmine hydrogen tartrate, a therapeutic agent for Alzheimer's disease. SEM and digital imaging confirmed the high structural accuracy and functionality of the fabricated microchannels. By optimizing nanoparticle preparation conditions, particles with consistent size (309.9–476.36 nm), narrow polydispersity index, and high encapsulation efficiency (up to 94.76 %) were achieved. Electrostatic interactions between chitosan, hyaluronic acid, and rivastigmine facilitated nanoparticle formation without covalent bonding. The optimized formulation was obtained using the Staggered Herringbone Micromixers channel, with a flow rate of 1 mL/min, 0.5 % w/v chitosan concentration, and 0.25 % w/v hyaluronic acid concentration with maximum particle uniformity and drug loading efficiency. <em>In vitro</em> drug release studies demonstrated a biphasic release pattern, with an initial burst phase followed by sustained release over 24 h. This study demonstrates the potential of combining 3D printing and microfluidics for the reproducible, scalable, and cost-effective production of electrostatic nanoparticulate drug delivery systems, offering a promising platform for treating Alzheimer's and other neurodegenerative diseases.</div></div>","PeriodicalId":15600,"journal":{"name":"Journal of Drug Delivery Science and Technology","volume":"110 ","pages":"Article 107084"},"PeriodicalIF":4.5000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Delivery Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1773224725004873","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

This research investigates the combination of 3D printing and microfluidic technologies to create innovative drug delivery systems for neurodegenerative conditions. Fused Deposition Modeling (FDM) was utilized to design and produce four different microfluidic channel configurations (Y-shaped, T-shaped, Baffle, and Staggered Herringbone Micromixers). These channels were used to prepare chitosan-hyaluronic acid polyelectrolyte nanoparticles encapsulating rivastigmine hydrogen tartrate, a therapeutic agent for Alzheimer's disease. SEM and digital imaging confirmed the high structural accuracy and functionality of the fabricated microchannels. By optimizing nanoparticle preparation conditions, particles with consistent size (309.9–476.36 nm), narrow polydispersity index, and high encapsulation efficiency (up to 94.76 %) were achieved. Electrostatic interactions between chitosan, hyaluronic acid, and rivastigmine facilitated nanoparticle formation without covalent bonding. The optimized formulation was obtained using the Staggered Herringbone Micromixers channel, with a flow rate of 1 mL/min, 0.5 % w/v chitosan concentration, and 0.25 % w/v hyaluronic acid concentration with maximum particle uniformity and drug loading efficiency. In vitro drug release studies demonstrated a biphasic release pattern, with an initial burst phase followed by sustained release over 24 h. This study demonstrates the potential of combining 3D printing and microfluidics for the reproducible, scalable, and cost-effective production of electrostatic nanoparticulate drug delivery systems, offering a promising platform for treating Alzheimer's and other neurodegenerative diseases.
利用3d打印装置制备载壳聚糖透明质酸纳米颗粒的微流控制备
本研究探讨了3D打印和微流体技术的结合,为神经退行性疾病创造创新的药物输送系统。利用熔融沉积模型(FDM)设计并制造了四种不同的微流体通道配置(y形、t形、挡板和交错人字形微混合器)。这些通道被用来制备壳聚糖-透明质酸聚电解质纳米颗粒,包封酒石酸氢雷瓦斯汀,一种治疗阿尔茨海默病的药物。扫描电镜和数字成像证实了所制备的微通道具有较高的结构精度和功能性。通过优化制备条件,获得了粒径一致(309.9 ~ 476.36 nm)、多分散指数窄、包封效率高(94.76%)的纳米颗粒。壳聚糖、透明质酸和伐斯汀之间的静电相互作用促进了纳米颗粒的形成,而没有共价键。采用交错人字形微混合器通道,在流速为1 mL/min,壳聚糖浓度为0.5% w/v,透明质酸浓度为0.25% w/v的条件下,获得最佳的颗粒均匀性和载药效率。体外药物释放研究显示了两相释放模式,最初的爆发阶段随后持续释放超过24小时。该研究表明,将3D打印和微流体相结合,可重复、可扩展且具有成本效益的静电纳米颗粒药物传递系统的潜力,为治疗阿尔茨海默氏症和其他神经退行性疾病提供了一个有前途的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
8.00%
发文量
879
审稿时长
94 days
期刊介绍: The Journal of Drug Delivery Science and Technology is an international journal devoted to drug delivery and pharmaceutical technology. The journal covers all innovative aspects of all pharmaceutical dosage forms and the most advanced research on controlled release, bioavailability and drug absorption, nanomedicines, gene delivery, tissue engineering, etc. Hot topics, related to manufacturing processes and quality control, are also welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信