Adnan Sadeghi-Lari , Fatemeh Karimi Moqbeli , Mohammad Faryabi
{"title":"Delineation of groundwater critical zones by integrating GIS and MCDM techniques in the arid region of Sirjan, southeastern Iran","authors":"Adnan Sadeghi-Lari , Fatemeh Karimi Moqbeli , Mohammad Faryabi","doi":"10.1016/j.gsd.2025.101470","DOIUrl":null,"url":null,"abstract":"<div><div>In arid regions, the overexploitation of groundwater (GW) has led to the degradation of aquifers. To address this issue, identifying GW critical zones (GWCZs) is more crucial than identifying GW potential zones. This paper delineates GWCZs in the Sirjan district by integrating geographic information system (GIS) and multi-criteria decision-making (MCDM) techniques. Two scientific MCDM models, including the analytic hierarchy process (AHP) and multi-influencing factors (MIF), were employed to create a GWCZs map. Within the GIS platform, the field data were applied to create, classify, and assign weights to thematic layers of Annual GW discharge (AGD), water well density (WWD), aquifer recharge (AR), aquifer lithology (AL), aquifer thickness (AT), and GW quality change (GQC). Subsequently, the GWCZs map was generated by applying the overlay weighted-sum method to the six different layers. Using AHP, 10.04, 23.62, 32.8, and 33.54 %; and using MIF, 10.13, 23.36, 40.59, and 25.92 % of the study area were classified into critical, sub-critical, semi-balanced, and balanced zones, respectively. The regression analysis and receiver operating curve (ROC) techniques were utilized to assess the reliability of the models. The comparison revealed that both models have acceptable results. However, the MIF method, with an R<sup>2</sup> of 0.88 and Area Under Curve (AUC) of 0.83, was more reliable than the AHP method, with an R<sup>2</sup> of 0.86 and AUC of 0.81. The findings of this research can provide valuable assistance for local and government authorities to ensure the sustainable management and development of GW resources.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"30 ","pages":"Article 101470"},"PeriodicalIF":4.9000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groundwater for Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352801X25000670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
In arid regions, the overexploitation of groundwater (GW) has led to the degradation of aquifers. To address this issue, identifying GW critical zones (GWCZs) is more crucial than identifying GW potential zones. This paper delineates GWCZs in the Sirjan district by integrating geographic information system (GIS) and multi-criteria decision-making (MCDM) techniques. Two scientific MCDM models, including the analytic hierarchy process (AHP) and multi-influencing factors (MIF), were employed to create a GWCZs map. Within the GIS platform, the field data were applied to create, classify, and assign weights to thematic layers of Annual GW discharge (AGD), water well density (WWD), aquifer recharge (AR), aquifer lithology (AL), aquifer thickness (AT), and GW quality change (GQC). Subsequently, the GWCZs map was generated by applying the overlay weighted-sum method to the six different layers. Using AHP, 10.04, 23.62, 32.8, and 33.54 %; and using MIF, 10.13, 23.36, 40.59, and 25.92 % of the study area were classified into critical, sub-critical, semi-balanced, and balanced zones, respectively. The regression analysis and receiver operating curve (ROC) techniques were utilized to assess the reliability of the models. The comparison revealed that both models have acceptable results. However, the MIF method, with an R2 of 0.88 and Area Under Curve (AUC) of 0.83, was more reliable than the AHP method, with an R2 of 0.86 and AUC of 0.81. The findings of this research can provide valuable assistance for local and government authorities to ensure the sustainable management and development of GW resources.
期刊介绍:
Groundwater for Sustainable Development is directed to different stakeholders and professionals, including government and non-governmental organizations, international funding agencies, universities, public water institutions, public health and other public/private sector professionals, and other relevant institutions. It is aimed at professionals, academics and students in the fields of disciplines such as: groundwater and its connection to surface hydrology and environment, soil sciences, engineering, ecology, microbiology, atmospheric sciences, analytical chemistry, hydro-engineering, water technology, environmental ethics, economics, public health, policy, as well as social sciences, legal disciplines, or any other area connected with water issues. The objectives of this journal are to facilitate: • The improvement of effective and sustainable management of water resources across the globe. • The improvement of human access to groundwater resources in adequate quantity and good quality. • The meeting of the increasing demand for drinking and irrigation water needed for food security to contribute to a social and economically sound human development. • The creation of a global inter- and multidisciplinary platform and forum to improve our understanding of groundwater resources and to advocate their effective and sustainable management and protection against contamination. • Interdisciplinary information exchange and to stimulate scientific research in the fields of groundwater related sciences and social and health sciences required to achieve the United Nations Millennium Development Goals for sustainable development.