{"title":"A novel markerless gait analysis method to detect alterations in inter-joint coupling patterns of human foot during cross-slope walking","authors":"Jie-Wen Li , Xin Ma , Wen-Ming Chen","doi":"10.1016/j.jbiomech.2025.112766","DOIUrl":null,"url":null,"abstract":"<div><div>Walking on uneven surfaces alters foot joint kinematics and challenges gait stability. The intricate joint coupling relationship of the human foot, which is essential for biomechanical adaptations, particularly when encountering uneven surfaces, remains unclear. This study focused on quantifying foot joint coordination on cross-slopes using a markerless gait analysis method. Twelve healthy subjects performed walking tests on a gait platform under level, 8° everted and 8° inverted surface conditions. Segmental motion between rearfoot, midfoot, forefoot, and hallux were analyzed using a point cloud-based multi-segment foot model (MSFM). Adaptive changes of multi-segmental foot kinematics and inter-joint coupling relationships were compared across different cross-slope conditions. The results indicated that the rearfoot dominated frontal plane motion during everted surface walking in both middle and late stance, while the forefoot and midfoot dominated during inverted surface walking, respectively. In contrast to level walking, the sagittal-plane motion of the midtarsal joints during everted and inverted surface walking did not significantly contribute to foot kinematics at push-off. Further analysis reveals that significant variabilities exist in joint coupling behavior at different phases of the cross-slope walking.These findings demonstrate the effectiveness of the proposed method in detecting the complex inter-joint kinematics and coupling patterns of the human foot during cross-slope walking. The results provide insights into the kinematic changes of foot joints for terrain adaptation in uneven walking surfaces and advocate the application of novel motion analysis methods for tracking natural gait patterns.</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"188 ","pages":"Article 112766"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929025002787","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Walking on uneven surfaces alters foot joint kinematics and challenges gait stability. The intricate joint coupling relationship of the human foot, which is essential for biomechanical adaptations, particularly when encountering uneven surfaces, remains unclear. This study focused on quantifying foot joint coordination on cross-slopes using a markerless gait analysis method. Twelve healthy subjects performed walking tests on a gait platform under level, 8° everted and 8° inverted surface conditions. Segmental motion between rearfoot, midfoot, forefoot, and hallux were analyzed using a point cloud-based multi-segment foot model (MSFM). Adaptive changes of multi-segmental foot kinematics and inter-joint coupling relationships were compared across different cross-slope conditions. The results indicated that the rearfoot dominated frontal plane motion during everted surface walking in both middle and late stance, while the forefoot and midfoot dominated during inverted surface walking, respectively. In contrast to level walking, the sagittal-plane motion of the midtarsal joints during everted and inverted surface walking did not significantly contribute to foot kinematics at push-off. Further analysis reveals that significant variabilities exist in joint coupling behavior at different phases of the cross-slope walking.These findings demonstrate the effectiveness of the proposed method in detecting the complex inter-joint kinematics and coupling patterns of the human foot during cross-slope walking. The results provide insights into the kinematic changes of foot joints for terrain adaptation in uneven walking surfaces and advocate the application of novel motion analysis methods for tracking natural gait patterns.
期刊介绍:
The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership.
Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to:
-Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells.
-Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions.
-Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response.
-Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing.
-Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine.
-Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction.
-Molecular Biomechanics - Mechanical analyses of biomolecules.
-Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints.
-Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics.
-Sports Biomechanics - Mechanical analyses of sports performance.