{"title":"Computational modeling of biomechanical response of osteocyte integrin and cytoskeleton based on the piezoelectricity of bone matrix","authors":"Zhengbiao Yang , Yuqing Duanwang , Aohua Zhang , Shibo Gu , Yutang Xie , Le Zhao , Yanru Xue , Yanqin Wang , Xiaogang Wu , Meng Zhang , Weiyi Chen","doi":"10.1016/j.jbiomech.2025.112778","DOIUrl":null,"url":null,"abstract":"<div><div>Osteocytes are key in bone remodeling, responding to mechanical stimuli. The piezoelectric bone matrix converts these stimuli into electrical signals, influencing remodeling. To delve deeper into this, we created an osteocyte model within a piezoelectric bone matrix, incorporating the lacuna-canalicular system and mechanosensors such as integrins, cytoskeleton, and primary cilia. Upon subjecting the bone matrix to triaxial dynamic displacement loads, we examined the electric potential and flow velocity distributions and analyzed the mechanical signals of six mechanosensors. The results show that the strain is greater when the bone matrix is piezoelectric than non-piezoelectric. The maximum average potential of the surface structure of the cell membrane is about 69.3 mV. Piezoelectricity significantly increases the fluid velocity and changes the trend. The cytoskeleton and integrins in cell process experience greater stress than in cell body. Microtubules experience greater stress than actin filaments. Among all integrins, those in contact with collagen hillocks experience the greatest stress. In individual integrin, the β subunit has higher stress than α subunit, and the stress of legs connected to cytoskeleton is higher than head contacted with fluid. Within the cytoplasm, the stress of integrin increases with a decrease of the surrounding cytoskeleton density. Moreover, collagen hillocks have the greatest fluid shear stress and stress. Integrins, primary cilia, and cytoskeleton all exhibit significant displacement signal amplification, especially integrins. In conclusion, this study illuminates the complex process of mechanosensing in osteocytes within a piezoelectric environment. The established model offers valuable insights into the mechanism of osteomechanical signal transduction.</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"188 ","pages":"Article 112778"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929025002908","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Osteocytes are key in bone remodeling, responding to mechanical stimuli. The piezoelectric bone matrix converts these stimuli into electrical signals, influencing remodeling. To delve deeper into this, we created an osteocyte model within a piezoelectric bone matrix, incorporating the lacuna-canalicular system and mechanosensors such as integrins, cytoskeleton, and primary cilia. Upon subjecting the bone matrix to triaxial dynamic displacement loads, we examined the electric potential and flow velocity distributions and analyzed the mechanical signals of six mechanosensors. The results show that the strain is greater when the bone matrix is piezoelectric than non-piezoelectric. The maximum average potential of the surface structure of the cell membrane is about 69.3 mV. Piezoelectricity significantly increases the fluid velocity and changes the trend. The cytoskeleton and integrins in cell process experience greater stress than in cell body. Microtubules experience greater stress than actin filaments. Among all integrins, those in contact with collagen hillocks experience the greatest stress. In individual integrin, the β subunit has higher stress than α subunit, and the stress of legs connected to cytoskeleton is higher than head contacted with fluid. Within the cytoplasm, the stress of integrin increases with a decrease of the surrounding cytoskeleton density. Moreover, collagen hillocks have the greatest fluid shear stress and stress. Integrins, primary cilia, and cytoskeleton all exhibit significant displacement signal amplification, especially integrins. In conclusion, this study illuminates the complex process of mechanosensing in osteocytes within a piezoelectric environment. The established model offers valuable insights into the mechanism of osteomechanical signal transduction.
期刊介绍:
The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership.
Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to:
-Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells.
-Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions.
-Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response.
-Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing.
-Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine.
-Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction.
-Molecular Biomechanics - Mechanical analyses of biomolecules.
-Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints.
-Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics.
-Sports Biomechanics - Mechanical analyses of sports performance.