Bernd Wünnemann , Dada Yan , Yongzhan Zhang , Nils Andersen
{"title":"Ice-thermal feedback-driven temperature variability on the Tibetan Plateau","authors":"Bernd Wünnemann , Dada Yan , Yongzhan Zhang , Nils Andersen","doi":"10.1016/j.gr.2025.05.007","DOIUrl":null,"url":null,"abstract":"<div><div>Despite globally parallel changes in insolation intensity, the nature and causes of Holocene stadial-interstadial transitions and relevant cycles remain mysterious. Particularly, the ice-thermal feedbacks caused by the ice sheet on the Tibetan Plateau have pronounced effects in the interannual surface-heat anomaly and local-to-remote atmospheric circulations. However, its long-term variations and impacts in terms of melt-freeze dynamics remain mysterious. Our results are based on decadal resolved difference between two oxygen isotope records during the past 12,000 years from Donggi Cona Lake, north-eastern Tibetan Plateau. They indicate surface-heat anomaly-caused air-temperature variabilities, which were about −3 °C in springs 9,500 years ago and 2 °C in autumns afterwards on average, independent from insolation strength. We find that increasing autumn air-temperature variability generated large-scaled vertical convections over the Plateau 4,500 years ago. Since then, the recent Tibetan Plateau thermal forcing centre formed with the noted increase in anthropogenic greenhouse gas emission. The predicted increasing autumn air-temperature with greenhouse effect portends future higher atmospheric sensitivity. We anticipate Holocene ice-ages to be tipping points of the coupled surface-atmosphere climate changes.</div></div>","PeriodicalId":12761,"journal":{"name":"Gondwana Research","volume":"145 ","pages":"Pages 29-35"},"PeriodicalIF":7.2000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gondwana Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1342937X25001571","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite globally parallel changes in insolation intensity, the nature and causes of Holocene stadial-interstadial transitions and relevant cycles remain mysterious. Particularly, the ice-thermal feedbacks caused by the ice sheet on the Tibetan Plateau have pronounced effects in the interannual surface-heat anomaly and local-to-remote atmospheric circulations. However, its long-term variations and impacts in terms of melt-freeze dynamics remain mysterious. Our results are based on decadal resolved difference between two oxygen isotope records during the past 12,000 years from Donggi Cona Lake, north-eastern Tibetan Plateau. They indicate surface-heat anomaly-caused air-temperature variabilities, which were about −3 °C in springs 9,500 years ago and 2 °C in autumns afterwards on average, independent from insolation strength. We find that increasing autumn air-temperature variability generated large-scaled vertical convections over the Plateau 4,500 years ago. Since then, the recent Tibetan Plateau thermal forcing centre formed with the noted increase in anthropogenic greenhouse gas emission. The predicted increasing autumn air-temperature with greenhouse effect portends future higher atmospheric sensitivity. We anticipate Holocene ice-ages to be tipping points of the coupled surface-atmosphere climate changes.
期刊介绍:
Gondwana Research (GR) is an International Journal aimed to promote high quality research publications on all topics related to solid Earth, particularly with reference to the origin and evolution of continents, continental assemblies and their resources. GR is an "all earth science" journal with no restrictions on geological time, terrane or theme and covers a wide spectrum of topics in geosciences such as geology, geomorphology, palaeontology, structure, petrology, geochemistry, stable isotopes, geochronology, economic geology, exploration geology, engineering geology, geophysics, and environmental geology among other themes, and provides an appropriate forum to integrate studies from different disciplines and different terrains. In addition to regular articles and thematic issues, the journal invites high profile state-of-the-art reviews on thrust area topics for its column, ''GR FOCUS''. Focus articles include short biographies and photographs of the authors. Short articles (within ten printed pages) for rapid publication reporting important discoveries or innovative models of global interest will be considered under the category ''GR LETTERS''.