A controlled mosaic of Moon Mineralogy Mapper (M3) reflectance data in the lunar polar regions for understanding the mineralogy and water of the Artemis exploration zone
Shuai Li , Daniel P. Moriarty III , Carle M. Pieters , Rachel L. Klima , Angela M. Dapremont
{"title":"A controlled mosaic of Moon Mineralogy Mapper (M3) reflectance data in the lunar polar regions for understanding the mineralogy and water of the Artemis exploration zone","authors":"Shuai Li , Daniel P. Moriarty III , Carle M. Pieters , Rachel L. Klima , Angela M. Dapremont","doi":"10.1016/j.icarus.2025.116668","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents high-resolution (140 m/pixel) controlled mosaics of Moon Mineralogy Mapper (M<sup>3</sup>) data in the lunar polar regions (80°–90° N/S), with a focus on assessing mineralogy and water content across the Artemis exploration zone. M<sup>3</sup> extensively sampled the lunar polar regions, providing a high spatial resolution, hyperspectral imaging dataset that uniquely covers reflectance absorptions of major minerals and water on the lunar surface. We developed a methodology to preferentially use M<sup>3</sup> image cubes acquired when the star tracker was operational to ensure accurate spatial registration of M<sup>3</sup> pixels in our new mosaics. Integrated band depth (IBD) analyses were conducted to map distributions of hematite and other mineral species at the Artemis exploration zone. We also derived water contents at the Artemis sites from our new M<sup>3</sup> mosaics. Our findings indicate that the Artemis exploration zone is largely dominated by mature regolith that is probably rich in plagioclase. Hematite is predominantly concentrated on east-facing slopes, likely due to enhanced oxidation from Earth wind oxygen interacting with the lunar regolith. Pyroxene-rich exposures are observed in three Artemis candidate landing regions and they are all associated with fresh impact craters. The water distribution is highly variable, with higher concentrations on pole-facing slopes and near permanently shadowed regions, likely controlled by low surface temperatures. High water contents are observed at hematite exposures, which reinforces that water may play a crucial role in hematite formation on the Moon. These results provide valuable insights for future lunar exploration, aiding in the selection of landing sites, planning of traverse routes, and informing in situ resource utilization (ISRU) for the Artemis missions.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"440 ","pages":"Article 116668"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103525002155","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents high-resolution (140 m/pixel) controlled mosaics of Moon Mineralogy Mapper (M3) data in the lunar polar regions (80°–90° N/S), with a focus on assessing mineralogy and water content across the Artemis exploration zone. M3 extensively sampled the lunar polar regions, providing a high spatial resolution, hyperspectral imaging dataset that uniquely covers reflectance absorptions of major minerals and water on the lunar surface. We developed a methodology to preferentially use M3 image cubes acquired when the star tracker was operational to ensure accurate spatial registration of M3 pixels in our new mosaics. Integrated band depth (IBD) analyses were conducted to map distributions of hematite and other mineral species at the Artemis exploration zone. We also derived water contents at the Artemis sites from our new M3 mosaics. Our findings indicate that the Artemis exploration zone is largely dominated by mature regolith that is probably rich in plagioclase. Hematite is predominantly concentrated on east-facing slopes, likely due to enhanced oxidation from Earth wind oxygen interacting with the lunar regolith. Pyroxene-rich exposures are observed in three Artemis candidate landing regions and they are all associated with fresh impact craters. The water distribution is highly variable, with higher concentrations on pole-facing slopes and near permanently shadowed regions, likely controlled by low surface temperatures. High water contents are observed at hematite exposures, which reinforces that water may play a crucial role in hematite formation on the Moon. These results provide valuable insights for future lunar exploration, aiding in the selection of landing sites, planning of traverse routes, and informing in situ resource utilization (ISRU) for the Artemis missions.
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.