Zichen Wei , Yan Zhuang , Hao Zhang , Pengfei Zhang , Yang Li , Menghua Zhu , Te Jiang , Ronghua Pang
{"title":"Spectral feature variations of low-iron olivine under intense pulse-laser irradiations","authors":"Zichen Wei , Yan Zhuang , Hao Zhang , Pengfei Zhang , Yang Li , Menghua Zhu , Te Jiang , Ronghua Pang","doi":"10.1016/j.icarus.2025.116665","DOIUrl":null,"url":null,"abstract":"<div><div>Space weathering processes, including micrometeoroid impact and solar wind irradiation typically redden, darken, and attenuate the fingerprint absorption features in the visible and near-infrared (VNIR) reflectance spectra of planetary surface materials. The so-called lunar style space weathering typically produces nanophase metallic iron (npFe<sup>0</sup>) and amorphous mineral layers. This paradigm has been known to be inadequate in describing the weathering processes on many other airless bodies and many open questions are waiting to be answered. For example, the greater flux of micrometeorite impacts or higher surface temperature on Mercury may produce larger npFe<sup>0</sup> particles; the gardening effects on space weathering remain largely unknown; on asteroids such as Vesta, random regolith mixing and contamination by exogenic material from impacts are believed to be the dominant space weathering processes. To understand these and other questions in non-lunar style space weathering, we conducted pulsed laser irradiations on low-iron olivine grains in powders and pellets at various energy levels. By performing transmission electron microscope and reflectance spectroscopic measurements, we found that progressive irradiation caused continuous darkening. Meanwhile, the VNIR spectral slope changed from reddening to bluing after reaching a “saturation point”, and the absorption band depth transitioned from weakening to stabilization. At the same time, repeated irradiations led to limited growth of npFe<sup>0</sup> particles in low-iron olivine. In all simulated irradiations, significant spectral alterations occurred in early stages, implying that fresh surfaces are more sensitive to space weathering. The rates of spectral modification of powder samples were found to be remarkably lower than those of the pellet samples. We also observed that exogenous metal contaminants could evaporate and condense into an opaque layer during simulated bombardments, obscuring the original spectral features of regolith.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"440 ","pages":"Article 116665"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001910352500212X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Space weathering processes, including micrometeoroid impact and solar wind irradiation typically redden, darken, and attenuate the fingerprint absorption features in the visible and near-infrared (VNIR) reflectance spectra of planetary surface materials. The so-called lunar style space weathering typically produces nanophase metallic iron (npFe0) and amorphous mineral layers. This paradigm has been known to be inadequate in describing the weathering processes on many other airless bodies and many open questions are waiting to be answered. For example, the greater flux of micrometeorite impacts or higher surface temperature on Mercury may produce larger npFe0 particles; the gardening effects on space weathering remain largely unknown; on asteroids such as Vesta, random regolith mixing and contamination by exogenic material from impacts are believed to be the dominant space weathering processes. To understand these and other questions in non-lunar style space weathering, we conducted pulsed laser irradiations on low-iron olivine grains in powders and pellets at various energy levels. By performing transmission electron microscope and reflectance spectroscopic measurements, we found that progressive irradiation caused continuous darkening. Meanwhile, the VNIR spectral slope changed from reddening to bluing after reaching a “saturation point”, and the absorption band depth transitioned from weakening to stabilization. At the same time, repeated irradiations led to limited growth of npFe0 particles in low-iron olivine. In all simulated irradiations, significant spectral alterations occurred in early stages, implying that fresh surfaces are more sensitive to space weathering. The rates of spectral modification of powder samples were found to be remarkably lower than those of the pellet samples. We also observed that exogenous metal contaminants could evaporate and condense into an opaque layer during simulated bombardments, obscuring the original spectral features of regolith.
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.