Fengying Pan , Cheng Gong , Yiwen Sun , Zeliang Wu , Dongfang Li , Jiaxin Wu , Xianjun Cao , Yi Xu , Xiaowei Li , Hong Gao , Jinqiang Zhang , Yufei Zhao , Hao Liu
{"title":"Constructing Ru-P/O-transition metal bridge enabling high-performance oxygen evolution reaction","authors":"Fengying Pan , Cheng Gong , Yiwen Sun , Zeliang Wu , Dongfang Li , Jiaxin Wu , Xianjun Cao , Yi Xu , Xiaowei Li , Hong Gao , Jinqiang Zhang , Yufei Zhao , Hao Liu","doi":"10.1016/j.jechem.2025.05.021","DOIUrl":null,"url":null,"abstract":"<div><div>Incorporating low-concentration precious metals into transition metal phosphides (TMPs) may represent a promising strategy to achieve improved catalytic performance of oxygen evolution reaction (OER). We design RuP<sub>4</sub> clusters immobilized on porous NiFeP nanosheets with Ru-P/O-TM bridge (RuP-NiFeP) for effective OER. The Ru-P/O-Ni/Fe bridges formed between the RuP<sub>4</sub> clusters and the NiFeP facilitate electron transfer between oxyphilic Ru atoms and Ni/Fe atoms, enabling Ru to achieve optimized reactant/intermediate adsorption. Advanced characterizations and theoretical calculations reveal that the incorporation of Ru species leads to the upshift of <em>d</em> band center and the formation of more disordered γ-NiOOH. The Ru-based clusters and the achieved disordered γ-NiOOH may deliver synergistic effect to further enhance the OER capability of RuP-NiFeP. Moreover, the presence of Ru species shifts the OER mechanism from the absorbate evolution mechanism (AEM) pathway (NiFeP) to the lattice oxygen mechanism (LOM) pathway, with *OH deprotonation (*OH → *O) as the rate-determining step (RDS). The RuP-NiFeP catalyst exhibits remarkable alkaline OER activity, requiring only an overpotential of 225 mV to achieve a current density of 100 mA cm<sup>−2</sup>, and retains its performance with a minimal current density decay of 1.9% after stability test. This work offers valuable insights into the design of cost-effective and highly efficient electrocatalysts for alkaline OER.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"107 ","pages":"Pages 872-880"},"PeriodicalIF":14.9000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495625004140","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
Incorporating low-concentration precious metals into transition metal phosphides (TMPs) may represent a promising strategy to achieve improved catalytic performance of oxygen evolution reaction (OER). We design RuP4 clusters immobilized on porous NiFeP nanosheets with Ru-P/O-TM bridge (RuP-NiFeP) for effective OER. The Ru-P/O-Ni/Fe bridges formed between the RuP4 clusters and the NiFeP facilitate electron transfer between oxyphilic Ru atoms and Ni/Fe atoms, enabling Ru to achieve optimized reactant/intermediate adsorption. Advanced characterizations and theoretical calculations reveal that the incorporation of Ru species leads to the upshift of d band center and the formation of more disordered γ-NiOOH. The Ru-based clusters and the achieved disordered γ-NiOOH may deliver synergistic effect to further enhance the OER capability of RuP-NiFeP. Moreover, the presence of Ru species shifts the OER mechanism from the absorbate evolution mechanism (AEM) pathway (NiFeP) to the lattice oxygen mechanism (LOM) pathway, with *OH deprotonation (*OH → *O) as the rate-determining step (RDS). The RuP-NiFeP catalyst exhibits remarkable alkaline OER activity, requiring only an overpotential of 225 mV to achieve a current density of 100 mA cm−2, and retains its performance with a minimal current density decay of 1.9% after stability test. This work offers valuable insights into the design of cost-effective and highly efficient electrocatalysts for alkaline OER.
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy