Localization problems of Quillen

IF 0.8 2区 数学 Q2 MATHEMATICS
Satya Mandal
{"title":"Localization problems of Quillen","authors":"Satya Mandal","doi":"10.1016/j.jalgebra.2025.05.010","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>X</em> be a quasi projective scheme over a noetherian affine scheme <span><math><mi>S</mi><mi>p</mi><mi>e</mi><mi>c</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, <span><math><mi>U</mi><mo>⊆</mo><mi>X</mi></math></span> be an open subset, and <span><math><mi>Z</mi><mo>=</mo><mi>X</mi><mo>−</mo><mi>U</mi></math></span>. Assume that <em>Z</em> has a complete intersection subscheme structure, with <span><math><mi>k</mi><mo>=</mo><mrow><mi>co</mi></mrow><mi>dim</mi><mo>⁡</mo><mi>Z</mi></math></span>. Consider the map<span><span><span><math><mi>q</mi><mo>:</mo><mi>K</mi><mrow><mo>(</mo><mi>V</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>)</mo></mrow><mo>→</mo><mi>K</mi><mrow><mo>(</mo><mi>V</mi><mo>(</mo><mi>U</mi><mo>)</mo><mo>)</mo></mrow></math></span></span></span> of the <span><math><mi>K</mi></math></span>-theory spectra. We give a description of the homotopy fiber of <span><math><mi>q</mi></math></span>. Let <span><math><mi>C</mi><msup><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msup><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></math></span> denote the full subcategory of perfect modules <span><math><mi>F</mi><mo>∈</mo><mi>C</mi><mi>o</mi><mi>h</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> such that (1) <span><math><msub><mrow><mi>F</mi></mrow><mrow><mo>|</mo><mi>U</mi></mrow></msub><mo>=</mo><mn>0</mn></math></span>, (2) <span><math><mi>g</mi><mi>r</mi><mi>a</mi><mi>d</mi><mi>e</mi><mo>(</mo><mi>F</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>dim</mi></mrow><mrow><mi>V</mi><mo>(</mo><mi>X</mi><mo>)</mo></mrow></msub><mo>⁡</mo><mi>F</mi><mo>=</mo><mi>k</mi></math></span>. It turns out that the homotopy fiber of <span><math><mi>q</mi></math></span> is the <span><math><mi>K</mi></math></span>-theory spectra <span><math><mi>K</mi><mrow><mo>(</mo><mi>C</mi><msup><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msup><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>)</mo></mrow></math></span>. Likewise, we compute the homotopy fiber of the pullback map<span><span><span><math><mi>g</mi><mo>:</mo><mi>G</mi><mi>W</mi><mrow><mo>(</mo><mi>V</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>)</mo></mrow><mo>→</mo><mi>G</mi><mi>W</mi><mrow><mo>(</mo><mi>V</mi><mo>(</mo><mi>U</mi><mo>)</mo><mo>)</mo></mrow></math></span></span></span> of Karoubi Grothendieck-Witt bispectra. Consequently, we obtain long exact sequences of <span><math><mi>K</mi></math></span>-groups and of <span><math><mi>G</mi><mi>W</mi></math></span>-groups. These results settle some of the long standing open problems.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"680 ","pages":"Pages 205-266"},"PeriodicalIF":0.8000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325002947","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let X be a quasi projective scheme over a noetherian affine scheme Spec(A), UX be an open subset, and Z=XU. Assume that Z has a complete intersection subscheme structure, with k=codimZ. Consider the mapq:K(V(X))K(V(U)) of the K-theory spectra. We give a description of the homotopy fiber of q. Let CMZ(X) denote the full subcategory of perfect modules FCoh(X) such that (1) F|U=0, (2) grade(F)=dimV(X)F=k. It turns out that the homotopy fiber of q is the K-theory spectra K(CMZ(X)). Likewise, we compute the homotopy fiber of the pullback mapg:GW(V(X))GW(V(U)) of Karoubi Grothendieck-Witt bispectra. Consequently, we obtain long exact sequences of K-groups and of GW-groups. These results settle some of the long standing open problems.
Quillen的本地化问题
设X是noether仿射格式Spec(a)上的拟投影格式,U⊥X是开子集,且Z=X−U。设Z有一个完全相交子方案结构,k=codim (Z)。考虑K理论谱的mapq:K(V(X))→K(V(U))。我们给出了q的同伦纤维的一个描述。令CMZ(X)表示完美模F∈Coh(X)的满子范畴,使得(1)F∈Coh U=0,(2)等级(F)=dimV(X) F=k。结果表明q的同伦光纤是K理论谱K(CMZ(X))。同样,我们计算了Karoubi Grothendieck-Witt双谱的回拉映射的同伦光纤:GW(V(X))→GW(V(U))。因此,我们得到了k -群和gw -群的长精确序列。这些结果解决了一些长期存在的开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信