A reformulation of the conjecture of Prasad and Takloo-Bighash

IF 0.8 2区 数学 Q2 MATHEMATICS
Miyu Suzuki
{"title":"A reformulation of the conjecture of Prasad and Takloo-Bighash","authors":"Miyu Suzuki","doi":"10.1016/j.jalgebra.2025.05.007","DOIUrl":null,"url":null,"abstract":"<div><div>Prasad and Takloo-Bighash proposed a conjecture which predicts a necessary condition in terms of epsilon factors for representations of <span><math><msub><mrow><mi>GL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> and its inner forms to have linear periods. In this rather expository article, we reformulate their conjecture in the following form: The distinguished members in each generic <em>L</em>-packet <span><math><msub><mrow><mi>Π</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span> are determined by the characters of the component group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span> and local epsilon factors. We follow Aubert et al. for the definitions of the <em>L</em>-packets and the component groups.</div><div>We observe that under some hypotheses, the reformulated conjecture follows from the conjectural multiplicity formula recently proposed by Chen Wan for general spherical varieties and the conjectural integral formula for epsilon factors which we propose in this article.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"680 ","pages":"Pages 174-204"},"PeriodicalIF":0.8000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325002935","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Prasad and Takloo-Bighash proposed a conjecture which predicts a necessary condition in terms of epsilon factors for representations of GLn(F) and its inner forms to have linear periods. In this rather expository article, we reformulate their conjecture in the following form: The distinguished members in each generic L-packet Πϕ are determined by the characters of the component group Sϕ and local epsilon factors. We follow Aubert et al. for the definitions of the L-packets and the component groups.
We observe that under some hypotheses, the reformulated conjecture follows from the conjectural multiplicity formula recently proposed by Chen Wan for general spherical varieties and the conjectural integral formula for epsilon factors which we propose in this article.
对Prasad和taklo - bighash猜想的重新表述
Prasad和taklo - bighash提出了一个猜想,该猜想预测了GLn(F)的表示及其内部形式具有线性周期的一个必要条件。在这篇相当说明性的文章中,我们以以下形式重新表述他们的猜想:每个一般l包Πϕ中的杰出成员由组成群sφ和局部epsilon因子的特征决定。我们遵循Aubert等人对l包和组件组的定义。我们观察到,在某些假设下,重新表述的猜想是由陈万最近提出的关于一般球变的猜想多重性公式和我们提出的关于ε因子的猜想积分公式派生出来的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信