Semiorthogonal decompositions for generalised Severi-Brauer schemes

IF 0.8 2区 数学 Q2 MATHEMATICS
Ajneet Dhillon, Sayantan Roy-Chowdhury
{"title":"Semiorthogonal decompositions for generalised Severi-Brauer schemes","authors":"Ajneet Dhillon,&nbsp;Sayantan Roy-Chowdhury","doi":"10.1016/j.jalgebra.2025.04.038","DOIUrl":null,"url":null,"abstract":"<div><div>The purpose of this paper is to use conservative descent to study semiorthogonal decompositions for some homogeneous varieties over general bases. We produce a semiorthogonal decomposition for the bounded derived category of coherent sheaves on a generalised Severi-Brauer scheme. This extends known results for Severi-Brauer varieties and Grassmannians. We use our results to construct semiorthogonal decompositions for flag varieties over arbitrary bases. This generalises a result of Kapranov.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"680 ","pages":"Pages 70-95"},"PeriodicalIF":0.8000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325002753","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this paper is to use conservative descent to study semiorthogonal decompositions for some homogeneous varieties over general bases. We produce a semiorthogonal decomposition for the bounded derived category of coherent sheaves on a generalised Severi-Brauer scheme. This extends known results for Severi-Brauer varieties and Grassmannians. We use our results to construct semiorthogonal decompositions for flag varieties over arbitrary bases. This generalises a result of Kapranov.
广义Severi-Brauer格式的半正交分解
本文的目的是利用保守下降法研究一般基上齐次变异的半正交分解。给出了在广义Severi-Brauer格式上相干束的有界派生范畴的半正交分解。这扩展了已知的Severi-Brauer品种和Grassmannians的结果。我们利用我们的结果构造了任意基上标志变量的半正交分解。这推广了Kapranov的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信