Bioinspired oxygen-locking property electrocatalysts enable highly efficient electrochemical ozone production for sea sand desalination

IF 13.1 1区 化学 Q1 Energy
Zhaoyu Chen , Ben Zhang , Shuyan Lu , Guanfeng Xue , Qianzhi Gou , Jiacheng Wang , Ruduan Yuan , Juanxiu Xiao , Li Li , John Wang , Meng Li
{"title":"Bioinspired oxygen-locking property electrocatalysts enable highly efficient electrochemical ozone production for sea sand desalination","authors":"Zhaoyu Chen ,&nbsp;Ben Zhang ,&nbsp;Shuyan Lu ,&nbsp;Guanfeng Xue ,&nbsp;Qianzhi Gou ,&nbsp;Jiacheng Wang ,&nbsp;Ruduan Yuan ,&nbsp;Juanxiu Xiao ,&nbsp;Li Li ,&nbsp;John Wang ,&nbsp;Meng Li","doi":"10.1016/j.jechem.2025.05.016","DOIUrl":null,"url":null,"abstract":"<div><div>Electrochemical ozone (O<sub>3</sub>) production (EOP) faces a critical challenge due to the competitive oxygen evolution reaction (OER), which severely limits ozone yields. Inspired by the oxygen-binding mechanism of heme, we designed a biomimetic catalyst, FePP@SnO<sub>2</sub>@CA, by electrodepositing iron porphyrin (FePP) onto SnO<sub>2</sub>@CA nanosheets, endowing it with an “oxygen-locking property” to suppress competing OER. This catalyst demonstrates exceptional EOP performance, achieving an ozone production rate of 8.9 mmol cm<sup>−2</sup> h<sup>−1</sup> and a Faraday efficiency (FE) of 20.46% ± 1.6%. DFT calculations confirm that Fe–O<sub>2</sub> interactions stabilize O<sub>2</sub>* intermediates, redirecting the reaction pathway from OER to ozone generation and reducing the O–O coupling energy barrier, thereby enabling thermodynamic selectivity control. In addition, when FePP@SnO<sub>2</sub>@CA is used as a dual-functional material for sea sand desalination, the chlorine removal efficiency can reach 52.7%. This work provides a novel bioinspired strategy for EOP catalyst design and broadens the application potential of FePP@SnO<sub>2</sub>@CA in sustainable technologies.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"107 ","pages":"Pages 929-938"},"PeriodicalIF":13.1000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495625004097","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical ozone (O3) production (EOP) faces a critical challenge due to the competitive oxygen evolution reaction (OER), which severely limits ozone yields. Inspired by the oxygen-binding mechanism of heme, we designed a biomimetic catalyst, FePP@SnO2@CA, by electrodepositing iron porphyrin (FePP) onto SnO2@CA nanosheets, endowing it with an “oxygen-locking property” to suppress competing OER. This catalyst demonstrates exceptional EOP performance, achieving an ozone production rate of 8.9 mmol cm−2 h−1 and a Faraday efficiency (FE) of 20.46% ± 1.6%. DFT calculations confirm that Fe–O2 interactions stabilize O2* intermediates, redirecting the reaction pathway from OER to ozone generation and reducing the O–O coupling energy barrier, thereby enabling thermodynamic selectivity control. In addition, when FePP@SnO2@CA is used as a dual-functional material for sea sand desalination, the chlorine removal efficiency can reach 52.7%. This work provides a novel bioinspired strategy for EOP catalyst design and broadens the application potential of FePP@SnO2@CA in sustainable technologies.
生物启发锁氧特性电催化剂实现了海砂淡化的高效电化学臭氧生产
由于竞争析氧反应(OER)严重限制了臭氧的产量,电化学臭氧(O3)生产(EOP)面临着严峻的挑战。受血红素氧结合机制的启发,我们设计了一种仿生催化剂FePP@SnO2@CA,通过在SnO2@CA纳米片上电沉积卟啉铁(FePP),赋予其“锁氧特性”来抑制竞争OER。该催化剂具有优异的EOP性能,臭氧生成速率为8.9 mmol cm−2 h−1,法拉第效率(FE)为20.46%±1.6%。DFT计算证实,Fe-O2相互作用稳定了O2*中间体,将反应路径从OER转向臭氧生成,降低了O-O耦合能垒,从而实现了热力学选择性控制。此外,FePP@SnO2@CA作为双功能材料用于海砂脱盐时,除氯效率可达52.7%。这项工作为EOP催化剂的设计提供了一种新的生物启发策略,拓宽了FePP@SnO2@CA在可持续技术中的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信