Leyu Gou , Xianwei Zhang , Haodong Gao , Gang Wang , Lei Yan , Hualiang Zhu
{"title":"Fungus-induced sand stabilization: Strength and erosion resistance properties","authors":"Leyu Gou , Xianwei Zhang , Haodong Gao , Gang Wang , Lei Yan , Hualiang Zhu","doi":"10.1016/j.enggeo.2025.108156","DOIUrl":null,"url":null,"abstract":"<div><div>Climate change increases the frequency of extreme weather events, intensifying shallow flow-type landslides, soil erosion in mountainous regions, and slope failures in coastal areas. Vegetation and biopolymers are explored for ecological slope protection; however, these approaches often face limitations such as extended growth cycles and inconsistent reinforcement. This study investigates the potential of filamentous fungi and wheat bran for stabilizing loose sand. Triaxial shear tests, disintegration tests, and leachate analyses are conducted to evaluate the mechanical performance, durability, and environmental safety of fungus-treated sand. Results show that the mycelium enhances soil strength, reduces deformation, and lowers excess pore water pressure, with a more pronounced effect under undrained than drained conditions. Mycelium adheres to particle surfaces, forming a durable bond that increases cohesion and shifts the slope of the critical state line, significantly enhancing the mechanical stability of fungus-treated sand. The resulting strength parameters are comparable to those of soils reinforced with plant roots. Fungus-treated sand remains stable after 14 days of water immersion following triaxial shear tests, with no environmental risk from leachate. These findings demonstrated that fungal mycelium provides an effective and eco-friendly solution for stabilizing loose sand, mitigating shallow landslides, and reinforcing coastlines.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"354 ","pages":"Article 108156"},"PeriodicalIF":8.4000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013795225002522","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change increases the frequency of extreme weather events, intensifying shallow flow-type landslides, soil erosion in mountainous regions, and slope failures in coastal areas. Vegetation and biopolymers are explored for ecological slope protection; however, these approaches often face limitations such as extended growth cycles and inconsistent reinforcement. This study investigates the potential of filamentous fungi and wheat bran for stabilizing loose sand. Triaxial shear tests, disintegration tests, and leachate analyses are conducted to evaluate the mechanical performance, durability, and environmental safety of fungus-treated sand. Results show that the mycelium enhances soil strength, reduces deformation, and lowers excess pore water pressure, with a more pronounced effect under undrained than drained conditions. Mycelium adheres to particle surfaces, forming a durable bond that increases cohesion and shifts the slope of the critical state line, significantly enhancing the mechanical stability of fungus-treated sand. The resulting strength parameters are comparable to those of soils reinforced with plant roots. Fungus-treated sand remains stable after 14 days of water immersion following triaxial shear tests, with no environmental risk from leachate. These findings demonstrated that fungal mycelium provides an effective and eco-friendly solution for stabilizing loose sand, mitigating shallow landslides, and reinforcing coastlines.
期刊介绍:
Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.