Truncated Euler–Maruyama method for hybrid stochastic functional differential equations with infinite time delay

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Jingchao Zhou, Henglei Xu, Xuerong Mao
{"title":"Truncated Euler–Maruyama method for hybrid stochastic functional differential equations with infinite time delay","authors":"Jingchao Zhou,&nbsp;Henglei Xu,&nbsp;Xuerong Mao","doi":"10.1016/j.cam.2025.116773","DOIUrl":null,"url":null,"abstract":"<div><div>Li et al. (2023) developed a new theory to approximate the solution of hybrid stochastic functional differential equations (SFDEs) with infinite time delay via the numerical solution of the corresponding hybrid SFDEs with finite time delay. But hybrid SFDEs were required to be globally Lipschitz continuous. In this paper, we will lift this restriction. Under the local Lipschitz condition and the Khasminskii-type condition, numerical solutions of hybrid SFDEs with infinite time delay will be designed by using the truncated Euler–Maruyama method. The strong convergence and convergence rate of the numerical solutions in <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mrow><mo>(</mo><mi>q</mi><mo>≥</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> will be obtained. Finally, an example to stochastic functional volatility model is given to demonstrate the effectiveness of our new theory.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"472 ","pages":"Article 116773"},"PeriodicalIF":2.1000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725002870","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Li et al. (2023) developed a new theory to approximate the solution of hybrid stochastic functional differential equations (SFDEs) with infinite time delay via the numerical solution of the corresponding hybrid SFDEs with finite time delay. But hybrid SFDEs were required to be globally Lipschitz continuous. In this paper, we will lift this restriction. Under the local Lipschitz condition and the Khasminskii-type condition, numerical solutions of hybrid SFDEs with infinite time delay will be designed by using the truncated Euler–Maruyama method. The strong convergence and convergence rate of the numerical solutions in Lq(q2) will be obtained. Finally, an example to stochastic functional volatility model is given to demonstrate the effectiveness of our new theory.
无穷时滞混合随机泛函微分方程的截断Euler-Maruyama方法
Li et al.(2023)发展了一种新的理论,通过有限时滞混合随机泛函微分方程(SFDEs)的数值解来近似无限时滞混合随机泛函微分方程(SFDEs)的解。但混合SFDEs要求全局Lipschitz连续。在本文中,我们将取消这一限制。在局部Lipschitz条件和khasminskii型条件下,采用截断Euler-Maruyama方法设计了具有无限时间延迟的混合SFDEs的数值解。得到了数值解在Lq(q≥2)处的强收敛性和收敛速率。最后,以随机泛函波动率模型为例,验证了新理论的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信