Hao-Ying Li , Luke Granger , Bahijja Tolulope Raimi-Abraham , Robin J. Shattock , Charalampos Makatsoris , Ben Forbes
{"title":"Pulmonary delivery of LNP-mRNAs aerosolised by vibrating mesh nebulizer: An emphasis on variations and in-depth analyses of physicochemical properties","authors":"Hao-Ying Li , Luke Granger , Bahijja Tolulope Raimi-Abraham , Robin J. Shattock , Charalampos Makatsoris , Ben Forbes","doi":"10.1016/j.ijpharm.2025.125796","DOIUrl":null,"url":null,"abstract":"<div><div>The delivery of lipid nanoparticle (LNP)-mRNAs to the lungs attracts fast increasing interests for vaccination, as the mucosal immunity in the airway can prevent the establishment of an infection rather than only reduce the level of infection associated with systemic immunity triggered <em>via</em> intramuscular injection. The vibrating mesh nebuliser was well utilized to atomize inhalation solutions/suspensions for pulmonary delivery hence employed in this study for aerosolising LNP-mRNAs. In comparison with pre-aerosolised LNP-mRNAs, the post-aerosolised vectors demonstrated a significant increase (<em>t</em>-test, unpaired, <em>p</em> < 0.05) in particle size (215–363 nm vs. 116–130 nm), polydispersity index (PDI: > 0.33 vs. < 0.27), zeta potential (ZP: 11–14 mV vs. 2.6–7.7 mV), and encapsulation efficiency (EE: ∼99 % w/w vs. ∼91 % w/w), indicating a structural alteration upon high-frequency mesh vibration (HFMV). The particle sizes of LNP-mRNAs were further enlarged upon inertial impaction, and the size increments were dependent on the velocities of airflow for impaction and the N/P ratios. The aerosolised mists were fine, with >54 % w/w deposited in lower respiratory tract and >28.5 % w/w further delivered to alveolar regions. Further, a model was created to elucidate the variations of physicochemical properties for LNP-mRNAs upon HFMV and inertial impaction, and it disclosed that the fluidity and shear-induced fusion of LNPs were the fundamental reasons to cause these unfavourable changes particularly the size enlargement. These insights reveal that the effective development of inhaled LNP-mRNAs will rely on shear-less devices, formulation optimizations, inhalable dry powders, and their potential combinations.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"680 ","pages":"Article 125796"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517325006337","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The delivery of lipid nanoparticle (LNP)-mRNAs to the lungs attracts fast increasing interests for vaccination, as the mucosal immunity in the airway can prevent the establishment of an infection rather than only reduce the level of infection associated with systemic immunity triggered via intramuscular injection. The vibrating mesh nebuliser was well utilized to atomize inhalation solutions/suspensions for pulmonary delivery hence employed in this study for aerosolising LNP-mRNAs. In comparison with pre-aerosolised LNP-mRNAs, the post-aerosolised vectors demonstrated a significant increase (t-test, unpaired, p < 0.05) in particle size (215–363 nm vs. 116–130 nm), polydispersity index (PDI: > 0.33 vs. < 0.27), zeta potential (ZP: 11–14 mV vs. 2.6–7.7 mV), and encapsulation efficiency (EE: ∼99 % w/w vs. ∼91 % w/w), indicating a structural alteration upon high-frequency mesh vibration (HFMV). The particle sizes of LNP-mRNAs were further enlarged upon inertial impaction, and the size increments were dependent on the velocities of airflow for impaction and the N/P ratios. The aerosolised mists were fine, with >54 % w/w deposited in lower respiratory tract and >28.5 % w/w further delivered to alveolar regions. Further, a model was created to elucidate the variations of physicochemical properties for LNP-mRNAs upon HFMV and inertial impaction, and it disclosed that the fluidity and shear-induced fusion of LNPs were the fundamental reasons to cause these unfavourable changes particularly the size enlargement. These insights reveal that the effective development of inhaled LNP-mRNAs will rely on shear-less devices, formulation optimizations, inhalable dry powders, and their potential combinations.
期刊介绍:
The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.