Minling Gao , Hongchang Peng , Shaojie Yang , Ziqing Wang , Zhengzhen Xiao , Weiwen Qiu , Zhengguo Song
{"title":"Negative effects of pristine and UV-aged nanoplastics on lettuce growth and soil microbes","authors":"Minling Gao , Hongchang Peng , Shaojie Yang , Ziqing Wang , Zhengzhen Xiao , Weiwen Qiu , Zhengguo Song","doi":"10.1016/j.apsoil.2025.106211","DOIUrl":null,"url":null,"abstract":"<div><div>Investigating the toxicological effects of aged nanoplastics (NPs) in soil is critical, as UV irradiation may exacerbate their ecological toxicity by altering surface properties and enhancing interactions with the soil. Here, we investigated the effects of different concentrations of pristine and aged polystyrene (PS) and carboxyl-polystyrene (PSC) NPs on lettuce and soil properties. Both pristine and aged NPs inhibited pigment synthesis and lettuce growth. The maximum growth inhibition rates of leaf (root) biomass were 10.2 % (23.4 %) and 32.7 % (45.3 %) for pristine PS and PSC (50 mg·L<sup>−1</sup>) and 26.7 % (35.9 %) and 43.1 % (57.8 %) for aged PS and PSC (50 mg·L<sup>−1</sup>), respectively. NPs induced excessive reactive oxygen species (ROS) production in the leaves and roots, antioxidant defense mechanisms, and oxidative damage, which was more pronounced with aged NPs. ROS accumulation gradually increased with aging time and concentration of NPs, which inhibited photosynthesis and decreased biomass. At the same aging duration, exposure to either pristine or aged NPs significantly reduced soil pH. Compared to the control, neither pristine nor aged NPs altered the composition of dissolved organic matter, whereas aged PSC induced a significant increase in the intensity of soluble microbial byproducts; this was attributed to differences in soil acidity and alkalinity. Low concentrations of pristine and aged NPs increased the Chao 1 index in soils, exhibiting “hormesis,” and altered relative microbial abundances. Pristine and aged PS/PSCs promoted microbial oxidative phosphorylation, carbon fixation pathways in prokaryotes, and the tricarboxylic acid cycle. The results provide critical insights into the impacts of NPs on plant and soil microbial growth.</div></div>","PeriodicalId":8099,"journal":{"name":"Applied Soil Ecology","volume":"212 ","pages":"Article 106211"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soil Ecology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092913932500349X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Investigating the toxicological effects of aged nanoplastics (NPs) in soil is critical, as UV irradiation may exacerbate their ecological toxicity by altering surface properties and enhancing interactions with the soil. Here, we investigated the effects of different concentrations of pristine and aged polystyrene (PS) and carboxyl-polystyrene (PSC) NPs on lettuce and soil properties. Both pristine and aged NPs inhibited pigment synthesis and lettuce growth. The maximum growth inhibition rates of leaf (root) biomass were 10.2 % (23.4 %) and 32.7 % (45.3 %) for pristine PS and PSC (50 mg·L−1) and 26.7 % (35.9 %) and 43.1 % (57.8 %) for aged PS and PSC (50 mg·L−1), respectively. NPs induced excessive reactive oxygen species (ROS) production in the leaves and roots, antioxidant defense mechanisms, and oxidative damage, which was more pronounced with aged NPs. ROS accumulation gradually increased with aging time and concentration of NPs, which inhibited photosynthesis and decreased biomass. At the same aging duration, exposure to either pristine or aged NPs significantly reduced soil pH. Compared to the control, neither pristine nor aged NPs altered the composition of dissolved organic matter, whereas aged PSC induced a significant increase in the intensity of soluble microbial byproducts; this was attributed to differences in soil acidity and alkalinity. Low concentrations of pristine and aged NPs increased the Chao 1 index in soils, exhibiting “hormesis,” and altered relative microbial abundances. Pristine and aged PS/PSCs promoted microbial oxidative phosphorylation, carbon fixation pathways in prokaryotes, and the tricarboxylic acid cycle. The results provide critical insights into the impacts of NPs on plant and soil microbial growth.
期刊介绍:
Applied Soil Ecology addresses the role of soil organisms and their interactions in relation to: sustainability and productivity, nutrient cycling and other soil processes, the maintenance of soil functions, the impact of human activities on soil ecosystems and bio(techno)logical control of soil-inhabiting pests, diseases and weeds.