Almost Steiner systems in finite classical polar spaces

IF 1.2 3区 数学 Q1 MATHEMATICS
Yunxian Wu , Tao Feng , Lei Xu , Menglong Zhang
{"title":"Almost Steiner systems in finite classical polar spaces","authors":"Yunxian Wu ,&nbsp;Tao Feng ,&nbsp;Lei Xu ,&nbsp;Menglong Zhang","doi":"10.1016/j.ffa.2025.102662","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>Q</mi></math></span> be a finite classical polar space with rank <em>n</em> and <span><math><mi>P</mi></math></span> be a collection of <em>k</em>-dimensional subspaces in <span><math><mi>Q</mi></math></span> called blocks. Let Λ be a set of nonnegative integers. A pair <span><math><mo>(</mo><mi>Q</mi><mo>,</mo><mi>P</mi><mo>)</mo></math></span> is called a <em>t</em>-<span><math><msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>Λ</mi><mo>)</mo></mrow><mrow><mi>Q</mi></mrow></msub></math></span> design if every <em>t</em>-dimensional subspace in <span><math><mi>Q</mi></math></span> is contained in exactly <span><math><mi>λ</mi><mo>∈</mo><mi>Λ</mi></math></span> blocks of <span><math><mi>P</mi></math></span>. A <em>t</em>-<span><math><msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>Q</mi></mrow></msub></math></span> design is called a <em>Q</em>-Steiner system, which has <span><math><msub><mrow><mo>[</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mi>t</mi></mtd></mtr></mtable><mo>]</mo></mrow><mrow><mi>Q</mi></mrow></msub><mo>/</mo><msub><mrow><mo>[</mo><mtable><mtr><mtd><mi>k</mi></mtd></mtr><mtr><mtd><mi>t</mi></mtd></mtr></mtable><mo>]</mo></mrow><mrow><mi>q</mi></mrow></msub></math></span> blocks. Despite knowing very little about the existence of <em>Q</em>-Steiner systems, we demonstrate that given any positive integers <em>k</em> and <em>t</em> satisfying <span><math><mi>k</mi><mo>&gt;</mo><mi>t</mi></math></span>, for any finite polar space <span><math><mi>Q</mi></math></span> with a sufficiently large rank <em>n</em>, there exists a <em>t</em>-<span><math><msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>,</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo><mo>)</mo></mrow><mrow><mi>Q</mi></mrow></msub></math></span> design with <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><msub><mrow><mo>[</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mi>t</mi></mtd></mtr></mtable><mo>]</mo></mrow><mrow><mi>Q</mi></mrow></msub><mo>/</mo><msub><mrow><mo>[</mo><mtable><mtr><mtd><mi>k</mi></mtd></mtr><mtr><mtd><mi>t</mi></mtd></mtr></mtable><mo>]</mo></mrow><mrow><mi>q</mi></mrow></msub></math></span> blocks.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"108 ","pages":"Article 102662"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725000929","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let Q be a finite classical polar space with rank n and P be a collection of k-dimensional subspaces in Q called blocks. Let Λ be a set of nonnegative integers. A pair (Q,P) is called a t-(n,k,Λ)Q design if every t-dimensional subspace in Q is contained in exactly λΛ blocks of P. A t-(n,k,1)Q design is called a Q-Steiner system, which has [nt]Q/[kt]q blocks. Despite knowing very little about the existence of Q-Steiner systems, we demonstrate that given any positive integers k and t satisfying k>t, for any finite polar space Q with a sufficiently large rank n, there exists a t-(n,k,{1,2})Q design with (1+o(1))[nt]Q/[kt]q blocks.
有限经典极空间中的几乎斯坦纳系统
设Q是一个秩为n的有限经典极空间,P是Q中k维子空间块的集合。设Λ是一组非负整数。如果Q中的每个t维子空间恰好包含在P的Λ∈Λ块中,则一对(Q,P)称为t-(n,k,Λ)Q设计。一个t-(n,k,1)Q设计称为Q- steiner系统,其中有[nt]Q/[kt] Q块。尽管我们对Q- steiner系统的存在性知之甚少,但我们证明了给定任意正整数k和t满足k>;t,对于秩n足够大的有限极空间Q,存在一个t-(n,k,{1,2})Q设计,具有(1+o(1)))[nt]Q/[kt] Q块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信