Na Li , Jingyi Lin , Erlu Wu , Ping Jiang , Zhicheng Zhang , Junjie Wang , Wei Wang
{"title":"Influence of silica fume and carbide slag on waste mud soil under small strain: Dynamic characteristics and microscopic mechanism","authors":"Na Li , Jingyi Lin , Erlu Wu , Ping Jiang , Zhicheng Zhang , Junjie Wang , Wei Wang","doi":"10.1016/j.susmat.2025.e01464","DOIUrl":null,"url":null,"abstract":"<div><div>Silica fume and carbide slag can be used to modify waste mud soil (WMS), which can not only improve the mechanical properties of WMS, but also broaden resource utilization ways of silica fume and carbide slag. For that, in this paper, WMS was modified by adopting 8 % carbide slag and silica fume with different dosages (0, 3 %, 5 %, 7 %, 9 %, and 11 %). Then the small-strain dynamic properties of modified WMS were investigated by using resonance column test, and the microscopic mechanism of modified WMS was analyzed based on Scanning electron microscopy (SEM), Energy dispersive X-ray spectrometer (EDS), Transmission electron microscopy (TEM), X-ray diffraction test (XRD) and Mercury intrusion porosimetry (MIP). It can be found from the resonance column test that the dynamic shear modulus and the damping ratio show an increasing and decreasing trend with the increase of the confining pressure respectively, and both increase with increasing silica fume dosage in the range of 0 to 11 %. A kinetic model applicable to modified WMS was established by introducing the effects of confining pressure and silica fume into the Hardin-Drnevich model. Microscopic testing experiments indicate that there is a reaction between reactive SiO<sub>2</sub> in silica fume and Ca(OH)<sub>2</sub> in carbide slag, and calcium hydrated silicate (CSH) was generated, which improved the specimen density.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"45 ","pages":"Article e01464"},"PeriodicalIF":8.6000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993725002325","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Silica fume and carbide slag can be used to modify waste mud soil (WMS), which can not only improve the mechanical properties of WMS, but also broaden resource utilization ways of silica fume and carbide slag. For that, in this paper, WMS was modified by adopting 8 % carbide slag and silica fume with different dosages (0, 3 %, 5 %, 7 %, 9 %, and 11 %). Then the small-strain dynamic properties of modified WMS were investigated by using resonance column test, and the microscopic mechanism of modified WMS was analyzed based on Scanning electron microscopy (SEM), Energy dispersive X-ray spectrometer (EDS), Transmission electron microscopy (TEM), X-ray diffraction test (XRD) and Mercury intrusion porosimetry (MIP). It can be found from the resonance column test that the dynamic shear modulus and the damping ratio show an increasing and decreasing trend with the increase of the confining pressure respectively, and both increase with increasing silica fume dosage in the range of 0 to 11 %. A kinetic model applicable to modified WMS was established by introducing the effects of confining pressure and silica fume into the Hardin-Drnevich model. Microscopic testing experiments indicate that there is a reaction between reactive SiO2 in silica fume and Ca(OH)2 in carbide slag, and calcium hydrated silicate (CSH) was generated, which improved the specimen density.
期刊介绍:
Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.