Random unipotent Sylow subgroups of groups of Lie type of bounded rank

IF 0.7 2区 数学 Q2 MATHEMATICS
Saveliy V. Skresanov
{"title":"Random unipotent Sylow subgroups of groups of Lie type of bounded rank","authors":"Saveliy V. Skresanov","doi":"10.1016/j.jpaa.2025.108007","DOIUrl":null,"url":null,"abstract":"<div><div>In 2001 Liebeck and Pyber showed that a finite simple group of Lie type is a product of 25 carefully chosen unipotent Sylow subgroups. Later, in a series of works it was shown that 4 unipotent Sylow subgroups suffice. We prove that if the rank of a finite simple group of Lie type <em>G</em> is bounded, then <em>G</em> is a product of 11 random unipotent Sylow subgroups with probability tending to 1 as <span><math><mo>|</mo><mi>G</mi><mo>|</mo></math></span> tends to infinity. An application of the result to finite linear groups is given. The proofs do not depend on the classification of finite simple groups.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 8","pages":"Article 108007"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002240492500146X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In 2001 Liebeck and Pyber showed that a finite simple group of Lie type is a product of 25 carefully chosen unipotent Sylow subgroups. Later, in a series of works it was shown that 4 unipotent Sylow subgroups suffice. We prove that if the rank of a finite simple group of Lie type G is bounded, then G is a product of 11 random unipotent Sylow subgroups with probability tending to 1 as |G| tends to infinity. An application of the result to finite linear groups is given. The proofs do not depend on the classification of finite simple groups.
有界秩Lie型群的随机单幂Sylow子群
2001年Liebeck和Pyber证明了一个有限单群的Lie型是25个精心挑选的单能Sylow子群的乘积。随后,在一系列工作中证明了4个单能Sylow子群就足够了。证明了如果一类有限单群G的秩是有界的,则G是11个随机的单幂次群的乘积,当|G|趋于无穷时,这些群的概率趋于1。给出了该结果在有限线性群中的一个应用。证明不依赖于有限单群的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信